Hyaluronic acid (HA)fillers have been on the market

Similar documents
Key rheological properties of hyaluronic acid fillers: from tissue integration to product degradation

Complete Dermal Integration. Proven Duration.

*Resilient Hyaluronic Acid

WHEN FRENCH TOUCH MEETS BEAUTY

New Filler Approvals Refyne, Defyne, Vollure, Revanesse. Karol A Gutowski, MD, FACS Hot Topics

NEWS RELEASE. CONTACTS: Investors: Lisa DeFrancesco (862) Media: Mark Marmur (862) Ember Garrett (714)

PRESS MATERIAL. Contents: Appendix: Backgrounder Q-Med 2 Backgrounder RESTYLANE 3 Questions and answers 5 Recommended reading 7

TEOSYAL PEN: Personal experience after 12 months on 285 consecutive patients

REVOLUTIONAL PEPTIDES DERMAL FILLER

Hyaluronic acid and the advanced thixotropic

Hyaluronic acid. and the Advanced. Thixotropic

Redensity Innovation in eye circle treatment

Avoiding Complications and Achieving Success in Filler Injections. Sammy Sinno, MD

Lisa Chipps, MD, MS, FAAD Assistant Clinical Professor David Geffen School of Medicine at UCLA

Guide to THE Types of dermal fillers

FAB MEDIC LTD Product webpage:

I m living my life in colour. When I fulfil my potential, my personality shines through

background on restylane skinboosters SB0017_Backgrounder_V04.indd 1 07/03/ :27

Novel Hyaluronic Acid Dermal Filler: Dermal Gel Extra Physical Properties and Clinical Outcomes

Injectable Soft Tissue Fillers: Practical Applications. Karol A Gutowski, MD, FACS

Wake Forest Institute for Regenerative Medicine

Hyaluronic Acid Injections: Incorporating Advanced Microinjection Techniques Into Practice MELANIE D. PALM, MD, MBA, FAAD, FAACS

Hyaluronic Acid Injections: Incorporating Advanced Microinjection Techniques Into Practice ReachMD Page 1 of 6

Practical tips in Cosmetic Dermatology for the General Dermatologist. Dee Anna Glaser, MD

Vascular Complications of Soft Tissue Fillers

f a c t s Face gel with Xanthan Gum as a natural thickener

. DEFY LINES. along the sides of your nose and mouth ON YOUR FACE.

Dermal fillers have steadily grown in use over the. Juvéderm Injectable Gel: A Multicenter, Double-Blind, Randomized Study of Safety and Effectiveness

ABOUT MD SKIN SOLUTIONS

Update on Dermal Fillers. Joely Kaufman, MD Voluntary Assistant Professor Dermatology University of Miami Miller School of Medicine

MICRONEEDLING DEVICE (SKIN ROLLER) ENHANCES SKIN S ABSORPTION OF PRODUCTS

The unique treatment that restores your skin s inner structure for a more youthful-looking appearance

FACIAL ARTS. Manufacturer: naturelize GmbH Kasseler Straße Bad Emstal Germany Phone: +49 (0)

EVERYONE WILL NOTICE. No One Will Know.

Non-Surgical Epicanthoplasty and Rhinoplasty: Epicanthorhinoplasty

Informed Consent for Dermal Filler

PureSense INDICATIONS AND SUMMARY TABLE TEOSYAL. TEOSYAL PureSense First Lines. TEOSYAL PureSense. TEOSYAL PureSense. TEOSYAL PureSense.

MULTICENTER CLINICAL AND INSTRUMENTAL STUDY FOR THE EVALUATION OF EFFICACY AND TOLERANCE OF AN INTRADERMAL INJECTABLE PRODUCT AS A FILLER AND A

A new generation of cross-linked hyaluronic acid fillers

FAQs DERMAL FILLERS. 1 P age

SWISS INNOVATION APPLIED TO BEAUTY. Ultimate. Intense volume

To order reprints or e-prints of JDD articles please contact SPECIAL TOPIC

Filler injections with the blunt-tip microcannula compared to the sharp hypodermic needle

Julius Few, MD; Sue Ellen Cox, MD; Deepali Paradkar-Mitragotri, PhD; and Diane K. Murphy, MBA

New Treatment Packages for Winter Wonderland 2018 (See Page 5 for Free Gifts with Purchase & BOGO Offers)

Revitalize Rejuvenate ReNew

Safety of Storing and Reusing Hyaluronic Acid Fillers: A Retrospective Chart Review. Patrick K. Safo, MD, PhD; Christina Wahlgren, MD; Suzan Obagi, MD

A Randomized, Double-Blind, Multicenter Comparison of the Efficacy and Tolerability of Restylane Versus Zyplast for the Correction of Nasolabial Folds

Facial Fillers Dr Tarek Said Professor of Plastic Surgery Cairo University 2010

Products to Repair and Augment the Skin. Robert Daniels, CEO

Cosmetic Medicine. Level of Evidence: 2

Clinical studies with patients have been carried out on this subject of graft survival and out of body time. They are:

designed to stimulate collagen

PureSense. when efficacy meets comfort. PureSense. PureSense INDICATIONS AND SUMMARY TABLE SWISS INNOVATION APPLIED TO BEAUTY.

Keysight Technologies Mechanical Characterization of Brown and Grey Hair. Application Note

Personal Care. Industrial & Consumer Specialties. A unique solution for complete skin repair. Vitipure TM

A SuppleMeNt to JDD. Not Copy. Correction With a Ribose Cross-linked Collagen Dermal Filler. Penalties Apply

MID FACE VOLUMIZING 6/30/2015 DISCLOSURES. No Industry Disclosures

-5 th Generation- Poly-L-Lactic Acid. Thread Lifting

Hydryalix Advantages. Composition. Hydryalix

EMERGENTSKY RUSSIA AESTHETIC MEDICINE MARKET REPORT JUNE 2014

Rejuvenating Effects of Facial Hydrofilling using Restylane Vital

Hyalurosmooth. by Beauty Creations. Natural fine line and wrinkle filler

CLINICAL EVALUATION. Clinical Evaluation Dermal Filler 20/2 Hyacorp Face/GeneFill Soft Fill/ SMS Solution/Hyacorp Face II Voluma Version 3.

Management of acne requires proper application

TEPZZ 67Z447B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

Design and Optimization of Composite Base Frames & Shaft of Wind Turbine for Catamaran

To acclimate skin to AHAs prior to a peel Anti-aging, exfoliation, builds collagen. Gentle cleanser to remove sebum, skin debris and makeup.

INJECTING SCIENCE INTO YOUR BEAUTY

Laser Hair Removal: Results Of 2-Week Versus 6-Week Treatment Intervals

26 Spring

Understanding and Using Hyaluronic Acid. Seth L. Matarasso, MD

Company Introduction. Daewoong Pharmaceutical. DNCompany (DNC) Affiliate relationship. Founded in 2001

Module 3: Injectable Dermal Fillers

Own Your Beauty. with the Belotero range. Enjoy natural results with a filler tailored to your needs.

Five-Year Safety and Efficacy of a Novel Polymethylmethacrylate Aesthetic Soft Tissue Filler for the Correction of...

Collagen

In 2008, a study was conducted to measure the moisturizing performance of o/w skin care emulsions with 5 wt. % varying humectant that included Zemea

Accepted Manuscript. About melanocyte activation in idiopathic guttate hypomelanosis by 5-fluorouracil tattooing. Carlos Gustavo Wambier, MD, PhD

Tolerance of a Low-Level Blue and Red Light Therapy Acne Mask in Acne Patients with Sensitive Skin

NaturePep Sacha Inchi UNLOCK THE ANCIENT SECRET OF SCULPTED SKIN

An innovation in Filler Technology

SCULPTRA INJECTIONS. New Age Medical Clinic 90 Millburn Ave., Suite 201 Millburn NJ (973) Dr Maria Romanenko, DO

Fillers- Post Treatment Information

Aesthetic Surgery Journal

A NON-SURGICAL SKIN REJUVENATION TREATMENT

ASMI COMPLAINTS PANEL FINAL DETERMINATION Meeting held 10 November, 2009

HOW TO CHOOSE A FILLER OR NEUROMODULATOR TO TREAT YOUR PATIENTS AESTHETIC CONCERNS GERRIE OBI, MSN, APRN, AGPCNP-BC, CPSN SEPTEMBER 29, 2018

The Cleavage Imprinting Technique for Ensuring Mirror Image Medial Scar Symmetry in Reduction Mammoplasty

An innovation in Filler Technology

Informed Consent Hyaluronic Acid Filler Injection

1. M.B.B.S (Hons) University of NSW, Sydney, Australia. 3. Diploma Dermatology University of Cardiff, United Kingdom

The new lingerie with the anti-aging effect

Antiaging Treatments. Natalia Jiménez. Hospital Universitario Ramón y Cajal Grupo de Dermatología Pedro Jaén

Aesthetic Dermatology

The Effects of Shear on Neutralized Carbomers in Aqueous Conditions

FIBER OPTIC IRONING DIODE LASER EPILASION!

MARK D. EPSTEIN, M.D. F.A.C.S. Hyaluronic Acid (HA) INJECTION - INFORMATION FOR PATIENTS

GATULINE IN-TENSE. Bulletin 15. Introduction

WONDERFUL SKIN. SB_202731_Skinboosters_Consumer Guide A5_V03.indd 1 20/02/ :28

Transcription:

Cohesion of Hyaluronic Acid Fillers: Correlation Between Cohesion and Other Physicochemical Properties Katarina L.M. Edsman, PhD and Ake Öhrlund, MSc* BACKGROUND There are several published articles on characterization of fillers, describing methods for both chemical and physicochemical characterization. Recently a lot of focus has been on the development of methods for measuring cohesion of hyaluronic acid (HA) fillers. OBJECTIVE The aim of this study is to investigate and compare the drop-weight method and the correlation between cohesion and other physicochemical properties using a variety of HA fillers. MATERIALS AND METHODS HA fillers covering several product families and manufacturing techniques were used. The HA fillers also covered a range of HA concentrations from 12 to 24 mg/ml. Cohesion was determined using sensory evaluation and the drop-weight method. Other physicochemical properties evaluated were rheology and the swelling factor. RESULTS In this study, it was verified that values obtained by the drop-weight method reflect the perceived cohesion very well. The correlation with rheology is affected by the HA concentration in the products. A remarkably good correlation between swelling factor and cohesion was found. CONCLUSION Cohesion correlates with other physicochemical methods. It could be discussed whether there is a need for a separate cohesion method because other already established physicochemical methods such as rheology and swelling factor can describe the underlying properties that affect cohesion. The authors are employed by Galderma. Hyaluronic acid (HA)fillers have been on the market for many years; the first HA-filler registered in the United States was Restylane in 2003. The number of HAfillers has since then increased; in November 2016 there were 14 FDA-approved HA products, but not all were available on the US market. According to the American Society for Aesthetic Plastic Surgery, the number of nonsurgical aesthetic procedures in 2014 using HA fillers was 1,696,621, and it is expected to grow further to about 2,068,000 in 2016. 1 In Europe, the device approval regulations are different from the United States leading to a much larger number of approved products. In the United Kingdom alone, there are more than 150 different dermal filler products available of which 91% are HA fillers. The expected number of procedures with HA fillers in Europe in 2016 is 1,458,000. 2 With the increasing number of fillers on the market, there has also been an increase in the interest to differentiate the fillers. A scientific way to describe and differentiate the products is by their physicochemical properties. With the use of wellcharacterized fillers, it may in the future be possible to better understand the importance of the different properties for the in vivo performance. There are several articles on the characterization of fillers published, describing methods for both chemical and physicochemical characterization. 3 10 When it comes to physicochemical characterization, the most common and widely accepted among manufacturers are the rheological properties. The rheological *Both authors are affiliated with the Research & Development, Galderma, Uppsala, Sweden This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. Copyright 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Society for Dermatologic Surgery, Inc. ISSN: 1076-0512 Dermatol Surg 2018;44:557 562 DOI: 10.1097/DSS.0000000000001370 557

COHESION OF HA FILLERS properties relate to the polymer network, the crosslinking density, concentration of polymer, etc. 11 Other parameters that describe the gel properties are the swelling ability of the polymer network, extractable HA, etc. 3,4 Recently, a lot of focus has been on the cohesive properties of HA fillers. Several methods have been suggested for measuring cohesion. 5,6,12 14 In an earlier article, 6 a dissolution method, 12 a compression force method, 5,12,13 and the drop-weight method 6 were compared with the perceived cohesion. It was found that the drop-weight method was the preferred method because there was a good correlation with the perceived cohesion, the results do not depend on subjective assessments, and the method was closely related to the scientific definition of cohesion. 15 There have been suggestions that different physicochemical properties of the HA-gel relate to the clinical outcome. For example, the gel strength as measured by rheologyhasbeensaidtorelatetotheliftingcapacityand tissue integration. It has been suggested that firm gels have a better ability to resist deformation, 3,8,13,16,17 whereas softer gels have been said to better integrate into the tissue because they deform more easily. 9 There have also been some suggestions on how the cohesion affects the clinical performance. Falcone and Berg 18 suggested that cohesion would not be an advantage for fillers; others have suggested that it is important for the lifting capacity. 5,13 There have also been some studies on the integration of the product into the tissue that describe the high-cohesive products to have a larger integration. 19,20 Other investigators have suggested that low-cohesive gels spread or migrate in the tissue dependent on the injection depth. 5 The aim of this study is to further investigate and compare the correlation between cohesion measured using the drop-weight method and other physicochemical properties using a variety of HA fillers. Materials and Methods Materials The HA products tested in this study are shown in Table 1. Rheology The rheological properties were measured in a frequency sweep from 10 to 0.1 Hz at 0.1% strain (the strain within the linear viscoelastic region). The measurements were made using an Anton Paar MCR 301 (Anton Paar, Graz, Austria) equipped with a PP- 25 measuring system with a gap of 1 mm at 25 C. A 30-minute period was used for relaxation of the sample between loading and measuring. Two measurements were performed per sample. Swelling Factor The swelling factor of each product was determined by dispersing 0.5 g gel in saline to a total volume of 10 ml. The solution was allowed to swell to equilibrium for 3 to 5 hours before being mixed a second time. The volume of the swollen gel was measured after 16 hours. The swelling factor (SwF) at equilibrium was calculated as follows: V/V 0,whereV 0 is the initial volume of the gel and V is the volume of the fully swollen gel. Perceived Cohesion A test panel of 8 scientists performed a blinded sensory analysis of the different HA gel products (maximum number of gels each time was 7 gels). The test comprised manual handling of the gels and rating the gels on a scale of 1 to 5 (where 5 is the highest cohesion). Gels with a rating of 1 (RES L ) and 5 (RES F ) were used as references during the handling. Cohesion by Drop Weight The weight of an average fragment/drop of an HA gel that is pushed through a defined vertical orifice at a constant speed was determined. The gel was filled in a 1 ml BD glass syringe (Becton, Dickinson, Franklin Lakes, NJ) and the air was removed by centrifugation. An 18G cannula with a plane orifice (Intramedic Luer Stub Adapter 18 G; Becton, Dickinson) was mounted on the syringe and with the use of a Zwick material tester, Zwick BTC-FR 2.5 TH.D09 (Zwick Roell, Ulm, Germany); the gel was extruded at a constant speed of 7.5 mm per minute, yielding a volume flow of 0.24 ml per minute. When a constant force was achieved, at least 10 fragments/drops 558 DERMATOLOGIC SURGERY

EDSMAN AND ÖHRLUND TABLE 1. Products Tested in This Study Product (Old Name Within Brackets) Abbreviation Used in Paper Hyaluronic Acid Concentration (mg/ml) Technology Batch Belotero Balance BEL B 22.5 CPM 321205 Juvederm Ultra Plus XC JUV X+ 24 Hylacross H30LA50007 Juvederm Ultra XC JUV X 24 Hylacross H24LA50161 Juvederm Volbella JUV Vb 15 Vycross V15L625642 Juvederm Volift JUV Vi 17.5 Vycross V17LA30119 Juvederm Voluma XC JUV VuX 20 Vycross VB20A50135 Restylane Defyne (Emervel Deep RES D 20 OBT Several batches Lidocaine) Restylane Fynesse (Emervel Touch) RES F 20 OBT Several batches Restylane Kysse (Emervel Lips Lidocaine) RES K 20 OBT Several batches Restylane Lidocaine RES 20 NASHA Several batches Restylane Lyft Lidocaine (Restylane RES L 20 NASHA Several batches Perlane Lidocaine) Restylane Refyne (Emervel Classic RES R 20 OBT Several batches Lidocaine) Restylane Silk RES S 20 NASHA Several batches Restylane Skinboosters Vital Light RES SVL 12 NASHA Several batches Lidocaine Restylane Volyme (Emervel Volume RES V 20 OBT Several batches Lidocaine) Teosyal RHA 1 TEO 1 15 TPRL-142704C Teosyal RHA 2 TEO 2 23 TP30L-143601A Teosyal RHA 3 TEO 3 23 TP27L-143503C Teosyal RHA 4 TEO 4 23 TPUL-143501A were collected and weighed and the average weight per drop was calculated. Results Several physicochemical properties of the investigated HA products were measured; the rheological properties, the swelling ability of the gel, and the cohesive properties. To keep it simple, the rheological properties are described by the elastic modulus (G9) and the viscous modulus (G$), which gives information on the viscoelastic properties of the gels. The investigated HA products cover a large range with elastic modulus (G9) at 0.1 Hz from around 10 Pa (RES F )toabove500pa(res L ), Figure 1. All products have an elastic modulus that is higher than the viscous modulus. The swelling ability of the gel depends on the structure of its polymer network. With a more cross-linked, tighter network, there is less ability to expand the network during saline uptake compared with a looser polymer network. A gel that is further away from its equilibrium swelling in the syringe will be able to Figure 1. Elastic (blue) and viscous modulus (light blue) of the different hyaluronic acid products at 0.1 Hz. Figure 2. Swelling factor (SwF) for all tested products. 44:4:APRIL 2018 559

COHESION OF HA FILLERS absorb more saline. The swelling factor is determined from the saline uptake by the gel that is required to reach equilibrium swelling in the laboratory. If the swelling factor is 1, the gel is at equilibrium swelling in the syringe. The higher the swelling factor, the further away the gel is from equilibrium. The swelling factor varied from 2 (RES SVL ) to more than 17 (RES F ) for the studied products, Figure 2. Cohesion describes the ability of the gel to stick together. In the current study, both the sensory analysis (perceived cohesion) and the drop-weight method were used to determine the cohesion of the samples; the results are shown in Figure 3. Discussion In the earlier investigation, 6 only 2 different manufacturing techniques, OBT (Emervel) and NASHA (Restylane) were used, both having an HA concentration of 20 mg/ml. When using a small variation in products, one could easily find relationships that are not true when increasing the variation in samples. In the current paper, the scope was extended to include several manufacturing technologies having a range in HA concentration from 12 to 24 mg/ml, Table 1. Cohesion describes the ability of the gel to stick together. This property has gained a lot of interest lately. Gels have been described as cohesive, often without a measure of the cohesion, merely an estimation of its cohesivity by manually handling the gel. It has also sometimes been discussed as if a gel is either cohesive or not and as if there is not a continuous scale from low to high cohesion. To give a value on the cohesion, there is a need for an analytical method. Recently, 6 several suggested methods; a dissolution method, 12 a compression force method, 5,12,13 and the drop-weight method 6 were evaluated by comparing with sensory analysis. The preferred method for cohesion measurements was the drop-weight method. The drop-weight method was preferred because it had a good correlation with the sensory analysis, it was easily reproducible, it was not dependent on subjective assessments, and it was close to the IUPAC definition of cohesion. 15 In the current study, both the sensory analysis (perceived cohesion) and the drop-weight method were used to determine the cohesion of the samples; the results are shown in Figure 3. When comparing Figure 3A, B, one can see similarities. The correlation between drop weight and perceived cohesion is shown in Figure 4. The correlation shown earlier 6 is still valid, although the number of samples, manufacturing technologies, and HA concentrations represented have been increased. A relationship between cohesion and rheology was found earlier. 6 In that study, only 2 different manufacturing techniques OBT (Emervel) and NASHA (Restylane) were used, both having an HA concentration of 20 mg/ml. In this study, the Figure 3. (A) Cohesion measured as drop weight of the samples. (B) Cohesion determined by sensory analysis (perceived cohesion). Figure 4. Correlation between drop weight and perceived cohesion. Samples with hyaluronic acid concentration 20 mg/ml (blue), higher than 20 mg/ml (green) and lower than 20 mg/ml (red). 560 DERMATOLOGIC SURGERY

EDSMAN AND ÖHRLUND relationships are tested with an increased number of product families and manufacturing techniques. The HA products also cover a variety of HA concentrations, Table 1. The correlations shown earlier between G9 and perceived cohesion and between G9 and drop weight 6 are still valid, although the number of samples, manufacturing technologies, and HA concentrations represented have been increased, Figure 5. However, with the larger variation in samples, the correlation is not as strong as earlier. It seems that it is mainly the products with lower HA concentrations that do not correlate so well. Looking only at the samples with 20 mg/ml (blue diamonds), the correlation with G9 is better for the drop weight than for the perceived cohesion. A larger scatter in perceived cohesion is expected as perceived cohesion relies on assessments. In the previous investigation, 6 the gels with higher G9 values showed less cohesivity, and the gels with lower G9 values demonstrated higher cohesion values. For the current data set, this relationship seems to hold for gels with an HA concentration of 20 mg/ml or more. For the gels with lower HA concentrations, however, low cohesion values were observed regardless of the G9 value. Based on the observations described above, it was interesting to investigate potential correlations between cohesion measured by drop weight and other physicochemical measures of the gel. The swelling ability is a measure of gel properties and should not be confused with the swelling that can occur as an adverse event after injection of fillers. The swelling ability of Figure 6. Correlation between the swelling factor and the cohesion as measured by drop weight. Samples with hyaluronic acid concentration 20 mg/ml (blue), higher than 20 mg/ml (green) and lower than 20 mg/ml (red). a gel depends on the nature of its polymer network; a tighter network has less ability to expand during saline uptake compared with a looser network. The correlation between cohesion and the swelling factor as measured in vitro in the laboratory was found to be very good, Figure 6. There seems to be no outliers due to variations in concentration because gels with both higher and lower concentrations fit the correlation very well. It seems that the further away a product is from equilibrium swelling, the more cohesive the product is. This strong correlation implies that it will be difficult to separate the effect of cohesion from the effect of the swelling factor when trying to understand how these parameters affect the behavior in vivo. Conclusion In this study, it was verified that values obtained by the drop-weight method reflects the perceived cohesion Figure 5. Correlation between elastic modulus and the 2 cohesion measures; perceived cohesion (to the left) and drop weight (to the right). Samples with hyaluronic acid concentration 20 mg/ml (blue), higher than 20 mg/ml (green), and lower than 20 mg/ml (red). 44:4:APRIL 2018 561

COHESION OF HA FILLERS very well also when using a larger variation in samples. Cohesion also correlates with other physicochemical methods: the previously observed correlation with G9 from rheology 6 was confirmed for gels with an HA concentration of 20 mg/ml or higher, where higher G9 gels showed lower cohesion and lower G9 gels showed higher cohesion values. However, gels with HA concentrations lower than 20 mg/ml showed low cohesion values regardless of the G9 value. A remarkably good correlation was shown with the measured swelling factor regardless of the HA concentration. It could be discussed whether there is a need for a separate cohesion method, as other physicochemical methods such as rheology and swelling factor seem to be enough to describe the underlying properties that affect cohesion. References 1. Palarajah A. Medtech 360: Facial Injectables US 2016 Market Analysis. Toronto: Millennium Research Group Inc.; 2015. 2. Palarajah A. Medtech 360: Facial Injectables, Europe, 2016 Market Analysis. Toronto: Millennium Research Group Inc.; 2015. 3. Kablik J, Monheit GD, Yu LP, Chang G, et al. Comparative physical properties of hyaluronic acid dermal fillers. Dermatol Surg 2009;35: 302 12. 4. Edsman K, Nord LI, Öhrlund A, Lärkner H, et al. Gel properties of hyaluronic acid dermal fillers. Dermatol Surg 2012;38:1170 9. 5. Pierre S, Liew S, Bernardin A. Basics of dermal filler rheology. Dermatol Surg 2015;41:120 6. 6. Edsman KLM, Wiebensjö AM, Risberg AM, Öhrlund J A. Is there a method that can measure cohesivity? Cohesion by sensory evaluation compared with other test methods. Dermatol Surg 2015; 41:S365 72. 7. Stocks D, Sundaram H, Michaels J, Durrani MJ, et al. Rheological evaluation of the physical properties of hyaluronic acid dermal fillers. J Drugs Dermatol 2011;10:974 80. 8. Sundaram H, Voigts B, Beer K, Meland M. Comparison of the rheological properties of viscosity and elasticity in two categories of soft tissue fillers: calcium hydroxyapatite and hyaluronic acid. Dermatol Surg 2010;36(Suppl 3):1859 65. 9. Sundaram H, Cassuto D. Biophysical characteristics of hyaluronic acid soft tissue fillers and their relevance to aesthetic applications. Plast Reconstr Surg 2013;132:5S 21S. 10. Kenne L, Gohil S, Nilsson EM, Karlsson A, et al. Modification and cross-linking parameters in hyaluronic acid hydrogels definitions and analytical methods. Carbohydr Polym 2013;91:410 8. 11. Lorenc ZP, Öhrlund J A, Edsman K. Factors affecting the rheological measurement and characterization of hyaluronic acid gel fillers. J Drugs Dermatol 2017;16:611 7. 12. Sundaram H, Rohrich RJ, Liew S, Sattler G, et al. Cohesivity of hyaluronic acid fillers: development and clinical implications of a novel assay, pilot validation with a five-point grading scale, and evaluation of six U.S. Food and drug administration-approved fillers. Plast Reconstr Surg 2015;136:678 86. 13. Borrell M, Leslie DB, Tezel A. Lift capabilities of hyaluronic acid fillers. J Cosmet Laser Ther 2011;13:21 7. 14. Bourdon F, Charton E, Meunier S. Lift Capabilities Evaluation of Hyaluronic Acid Fillers. Available from: http://portal.clarionmedical. com/wp-content/uploads/2013/12/teosyal-lift-capabilities.pdf. Accessed October 2, 2017. 15. McNaught D, Wilkinson A; IUPAC. Compendium of Chemical Terminology. Oxford, United States: Blackwell Scientific Publications; 1997. Available from: http://goldbook.iupac.org. Accessed October 2, 2017. 16. Clark CP III. Animal-based hyaluronic acid fillers: scientific and technical considerations. Plast Reconstr Surg 2007;120:27S 32S. 17. Gold M. The science and art of hyaluronic acid dermal filler use in esthetic applications. J Cosmet Dermatol 2009;8:301 7. 18. Falcone S, Berg RA. Crosslinked hyaluronic acid dermal fillers: a comparison of rheological properties. J Biomed Mater Res A 2008;87: 264 71. 19. Flynn TC, Sarazin D, Bezzola A, Terrani C, et al. Comparative histology of intradermal implantation of mono and biphasic hyaluronic acid fillers. Dermatol Surg 2011;37:637 43. 20. Tran C, Carraux P, Micheels P, Kaya G, et al. In vivo bio-integration of three hyaluronic acid fillers in human skin: a histological study. Dermatology 2014;228:47 54. Address correspondence and reprint requests to: Katarina L.M. Edsman, PhD, Galderma, Seminariegatan 21, SE-752 28 Uppsala, Sweden, or e-mail: Katarina.edsman@ galderma.com 562 DERMATOLOGIC SURGERY