Prediction of WBGT-based clothing adjustment values from evaporative resistance

Similar documents
Contact person:

Interaction effects of radiation and convection measured by a thermal manikin wearing protective clothing with different radiant properties

The interaction of clothing. ventilation with dry and evaporative heat transfer of jackets: the effect of air and. vapor permeability

The E ects of Wind and Human Movement on the Heat and Vapour Transfer Properties of Clothing

The comparison of thermal properties of protective clothing using dry and sweating manikins

Heat Balance When Wearing Protective Clothing

Prediction of Clothing Thermal Insulation and Moisture Vapour Resistance of the Clothed Body Walking in Wind

Development of Empirical Equations to Predict Sweating Skin Surface Temperature for Thermal Manikins in Warm Environments.

Testing Services for the Evaluation of. Fabric Systems, Clothing Systems, Sleeping Bag Systems, Bedding Systems, and Personal Cooling Systems (PCS)

Non-evaporative effects of a wet mid layer on heat transfer through protective clothing

Experimental Heated, Breathing and Sweating Manikins. Integrating radiant. Fatigue Lab constructs the. losses. military use. of human body heat

Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland

A Comparison of Two Methods of Determining Thermal Properties of Footwear

The effects of protective clothing on metabolic rate

FORCED VENTILATION OF PROTECTIVE GARMENTS FOR HOT INDUSTRIES. J.A. Gonzalez, L.G. Berglund, T.L. Endrusick*, M.A. Kolka

Heat stress in chemical protective clothing: porosity and vapour resistance

Research Article Artificial Neural Network Estimation of Thermal Insulation Value of Children s School Wear in Kuwait Classroom

A Comparative Introduction on Sweating Thermal Manikin Newton and Walter

Impact of local clothing values on local skin temperature simulation

Published in: Proceedings of the 11th International Conference on Environmental Ergonomics

School of Health Sciences, University of Wollongong, Wollongong, Australia. Contact person:

SBS5225 HVACR I Thermal Comfort. Ir. Dr. Sam C. M. Hui Faculty of Science and Technology

Professor Alan Hedge, Cornell University 1/22

Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland. Local air gap thickness model for realistic simulation of thermal effects in clothing

Simulation of perspiration in sweating fabric manikin-walter

Parallel and Serial Methods of Calculating Thermal Insulation in European Manikin Standards

Clothing insulation From Wikipedia, the free encyclopedia

Calculation of Clothing Insulation by Serial and Parallel Methods: Effects on Clothing Choice by IREQ and Thermal Responses in the Cold

Defense Technical Information Center Compilation Part Notice

Room Climate Standard. Thomas Wolf, CSES

An evaluation of the thermal protective clothing used by six Australian fire brigades

Heat Gain From Thermal Radiation Through Protective Clothing With Different Insulation, Reflectivity and Vapour Permeability

Biomedical Research 2018; Special Issue: ISSN X Study on the effect of professional sports clothing on sports physiology.

Performance Study of Protective Clothing against Hot Water Splashes: from Bench Scale Test to Instrumented Manikin Test

Effect of Hair Style on Human Physiological Responses in a Hot Environment

INVESTIGATION OF HEAD COVERING AND THERMAL COMFORT IN RADIANT COOLING MALAYSIAN OFFICES

Benchmarking functionality of historical cold weather clothing: Robert F. Scott, Roald Amundsen, George Mallory

CHAPTER 6 DESIGN AND DEVELOPMENT OF HOSPITAL BED LINEN

Measurement Method for the Solar Absorptance of a Standing Clothed Human Body

Testing Cold Protection According to EN ISO 20344: Is There Any Professional Footwear that Does Not Pass?

SCRUB SUITS VS CLEAN AIR SUITS A THERMAL PROPERTIES COMPARISON

CLOTHING REAL EVAPORATIVE RESISTANCE DETERMINED BY MEANS OF A SWEATING THERMAL MANIKIN: A NEW ROUND-ROBIN STUDY

Laboratory assessment of cold weather clothing

8/2016. Protective clothing for firefighters TIGER MATRIX. 3rd category of Personal Protective Clothing

Effect of hair characteristics on vaginal temperature under hot and humid conditions in an Angus-Brahman multibreed herd.

Performance of Protective Clothing: Global Needs and Emerging Markets: 8 th Symposium

DUPONT CONTROLLED ENVIRONMENTS. To Reuse or Not to Reuse: A Life Cycle Assessment of Reusable Garment Properties

Effects of Two Cooling Garments on Post-exercise Thermal Comfort of Female Subjects in the Heat

Assessment of Hypothermia Blankets Using an Advanced Thermal Manikin John P. Rugh 1* and Khalid Barazanji 2

TECHNICAL NOTE NO. TN16-1 DATE January 2016 ADA DEVELOPMENT OF MATLAB SCRIPTS FOR THE CALCULATION OF THERMAL MANIKIN REGIONAL RESISTANCE VALUES

The Role of Tests and Manikin in Defining Fabrics Thermal Characteristics

Comfort of Clothing. Rajesh Mishra & Jiri Militky Technical University of Liberec Liberec, Czech Republic

Interaction of clothing and thermoregulation

Applicability of the Thermal Manikin for Thermal Comfort Investigations

The Use of 3D Anthropometric Data for Morphotype Analysis to Improve Fit and Grading Techniques The Results

Effects of clothing ventilation openings on thermoregulatory responses during exercise

Effects of Biodegrade Pesticide

EVALUATION OF PHYSIOLOGICAL PROPERTIES OF THE FIRST LAYER GARMENT FOR SPORT APPAREL

The basics of Flame retardant garments. Learn more about ISO 11612: Protection against heat and flame.

A Novel Approach for Fit Analysis of Protective Clothing Using Three-Dimensional Body Scanning

TECHNICAL REPORT NO. T17-10 DATE June 2017 EFFECTS OF HEAT AND MOISTURE TRANSFER PROPERTIES OF FABRIC ON HEAT STRAIN IN CHEMICAL PROTECTIVE ENSEMBLES

Webinar December 8, 2015

The Use of Footwear Insulation Values Measured on a Thermal Foot Model

Comparisons of Thermal and Evaporative Resistances of Kapok Coats and Traditional Down Coats

Investigation into Fit, Distribution and Size of Air Gaps in Fire-Fighter Jackets to Female Body Form

This document is a preview generated by EVS

* Nara Women's University, Nara, Japan Nofer Institute of Occupational Medicine, Lo&, Poland

Disposable Apparel Performance and Selection Guide

Identifying a suitable method for studying thermal comfort in people s homes

UC Berkeley Indoor Environmental Quality (IEQ)

Non-Formaldehyde Wrinkle Resistant Finishing on Silk Fabric with Polycarboxylic Acids

Evaluation of the performance of elastic band used for ready made garment manufacturing

Improvement in Wear Characteristics of Electric Hair Clipper Blade Using High Hardness Material

Think Before you Ink: Modeling Laser Tattoo Removal

FR Disposable Clothing Guide

SAN BERNARDINO COMMUNITY COLLEGE DISTRICT FOR CRAFTON HILLS COLLEGE

Case Study : An efficient product re-formulation using The Unscrambler

AFFINITY - A novel system for direct Intrafollicular infusion of liquid solutions containing active ingredients.

Growth and Changing Directions of Indian Textile Exports in the aftermath of the WTO

What is econometrics? INTRODUCTION. Scope of Econometrics. Components of Econometrics

An integrated approach to develop, validate and operate thermo-physiological human simulator for the development of protective clothing

ProCutiGen Hold Efficacy Data

Intravenous Access and Injections Through Tattoos: Safety and Guidelines

CHAPTER 4 INFLUENCE OF LYOCELL FIBER BLENDS ON THE COMFORT CHARACTREISTICS OF HOSPITAL TEXTILES

TEPZZ 9659Z A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: B32B 17/10 ( )

Improving Men s Underwear Design by 3D Body Scanning Technology

Analysing Performance of Protective Clothing upon Hot Liquid Exposure Using Instrumented Spray Manikin

PTTC/DOE/RPSEA Gas Shales Workshop Marcellus Shale Hydraulic Fracturing

Influence of Undergarment Structure on the Parameters of the Microclimate under Hermetic Protective Clothing

Clothing Evaporative Resistance: Its Measurements and Application in Prediction of Heat Strain

Determination of the Air Gap Thickness underneath the Garment for Lower Body Using 3D Body Scanning

INTRODUCING NOMEX LIMITEDWEAR

EVERYDAY HEROES DESERVE TO COME HOME SAFE

Page 6. [MD] Microdynamics PAS Committee, Measurement Specification Document, Women s Edition and Mens Edition, Microdynamics Inc., Dallas, TX, 1992.

VWR Garments for Laboratories and Clean Rooms!

Research Article Influence of Phase-Change Materials on Thermo-Physiological Comfort in Warm Environment

Clinical studies with patients have been carried out on this subject of graft survival and out of body time. They are:

Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors

THERMAL MANIKIN AND ITS STABILITY FOR ACCURATE AND REPEATABLE MEASUREMENTS

Clothing is worn for various reasons. The reasons most

Transcription:

Original Article PREDICATION Industrial Health OF 2017, WBGT 55, CAVS 549 554 549 Prediction of WBGT-based clothing adjustment values from evaporative resistance Thomas E. BERNARD 1 *, Candi D. ASHLEY 2, Ximena P. GARZON 1, Jung-Hyun KIM 3 and Aitor COCA 3 1 College of Public Health, University of South Florida, USA 2 College of Education, University of South Florida, USA 3 National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, USA Received July 15, 2017 and accepted October 3, 2017 Published online in J-STAGE October 14, 2017 Abstract: Wet bulb globe temperature (WBGT) index is used by many professionals in combination with metabolic rate and clothing adjustments to assess whether a heat stress exposure is sustainable. The progressive heat stress protocol is a systematic method to prescribe a clothing adjustment value (CAV) from human wear trials, and it also provides an estimate of apparent total evaporative resistance (R e,t,a ). It is clear that there is a direct relationship between the two descriptors of clothing thermal effects with diminishing increases in CAV at high R e,t,a. There were data to suggest an interaction of CAV and R e,t,a with relative humidity at high evaporative resistance. Because human trials are expensive, manikin data can reduce the cost by considering the static total evaporative resistance (R e,t,s ). In fact, as the static evaporative resistance increases, the CAV increases in a similar fashion as R e,t,a. While the results look promising that R e,t,s can predict CAV, some validation remains, especially for high evaporative resistance. The data only supports air velocities near 0.5 m/s. Key words: Thermal stress, WBGT, Evaporative resistance, Clothing adjustment value, Clothing Introduction Occupational heat stress assessment considers a combination of environmental conditions, metabolic rate and clothing requirements. The ACGIH Threshold Limit Values (TLV ) for heat stress and strain 1), the NIOSH Recommended Exposure Limit (REL) 2) and the ISO 7423 3) are examples of a wet bulb globe temperature (WBGT) based method. The threshold establishes a point at which most acclimatized, healthy adults can maintain thermal equilibrium for a long period of time; that is, it is a sustainable exposure 4). In this way, the WBGT limit is suitable for screening heat stress exposures. *To whom correspondence should be addressed. E-mail: tbernard@health.usf.edu 2017 National Institute of Occupational Safety and Health The idea of adjusting the heat stress threshold based on clothing has been around for 35 yr 5). In its current form, a Clothing Adjustment (CAV) is added to the ambient WBGT to assign an effective WBGT that accounts for the added heat stress burden 1, 3, 6 8). At first, the CAV was determined by professional judgment based on experience with the clothing ensemble. The method evolved with the use of a progressive heat stress protocol 9). At University of South Florida (USF), the CAV was determined from wear trials using a progressive heat stress protocol 6, 7, 10) where the difference in critical WBGTs between work clothes trials and the trials of the ensemble of interest was the CAV. While the method of developing CAVs appears to be robust 8), the costs associated with the progressive protocol are high. Working from manikins, the method to determine static total evaporative resistance (R e,t,s ) is well established This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.

550 T BERNARD et al. through standards and practice. It is clear that the evaporative resistance is related to basic qualities of the fabrics (e.g., woven versus monolithic films, microporous versus vapor barrier, porosity) and the construction of the ensemble. A step toward accounting for the actual evaporative resistance due to convection of ambient air under the clothing was embodied in ISO 9920 11), which provided a method to calculate a resultant evaporative resistance (R e,t,r ) based on ambient air movement and walking speed 12). The progressive heat stress protocol can also be used to estimate apparent total evaporative resistance (R e,t,a ) 13 15). Because it is a wear trial, the progressive protocol can provide a real-world heat transfer coefficient for evaporative cooling. A gap in our knowledge is the relationship between R e,t,r and R e,t,a. Because of the wide variety of clothing and the costs associated with setting a CAV, it would be helpful to use manikin data rather than human trials to establish a CAV for a given clothing ensemble. The purpose of this paper is to (1) present the relationship between CAV and R e,t,a based on data from USF studies, and (2) relate CAV to R e,t,s based on a more limited set of pairs of manikin and wear trial data. Methods Progressive heat stress protocol For the data reported here, the progressive heat stress protocol began with a comfortable environment that was easily sustainable. After thermal equilibrium was established, the temperature and humidity were slowly increased in 5-min intervals. That is, once the participant reached thermal equilibrium (no changes in T re and HR for at least 15 min), dry bulb temperature (T db ) was increased about 0.8 C at a fixed relative humidity every 5 min. Rectal temperature (T re ), heart rate (HR), skin temperature (T sk ), and ambient conditions were recorded. Metabolic rate was estimated from the assessment of oxygen consumption via expired gases sampled every 30 min in a trial. The transition from a steady value for T re to values that were steadily increasing were marked as the critical WBGT (WBGTcrit) 4, 6, 7, 10). The working assumption was that the person at the critical condition was near thermal equilibrium. The apparent total evaporative resistance (R e,t,a ) was estimated from ambient and physiological measurements 14) : R e,t,a =(P sk P a ) / [H net +(T db T sk ) / I T,r ], and H net =M W ext S+C res E res, where P sk =water vapor pressure saturated at T sk, kpa P a =ambient water vapor pressure, kpa, T sk =skin temperature, C M = metabolic rate, W W ext =external work, W S=estimated heat storage rate, W C res =convective heat gain in the lungs, W E res =evaporative cooling in the lungs, W. Study designs The data presented in this paper came from one of three different study designs. The first study was interested in the effects of relative humidity on CAV and R e,t,a 7). It used the progressive heat stress protocol to find the effect of relative humidity (RH) on WBGT crit for five clothing ensembles that included work clothes, cotton coveralls, particle-barrier coveralls, microporous film (water-barrier) coveralls, and vapor-barrier coveralls. The non-woven coveralls were limited-use coverall designs without a hood or closures at the wrists and ankles. The metabolic rate was fixed at approximately 160 W m 2 to approximate moderate work. The acclimatized subjects were exposed to three levels of RH: 20, 50 and 70%. The second study design was interested in the effects of metabolic rate on CAV and R e,t,a at 50% RH 6). The three levels of metabolic rates were 115, 175 and 250 W m 2 to approximate light, moderate, and heavy work. The same five clothing ensembles were used. The third study design was the general design used for most other studies to compare different ensembles using work clothes as a reference/control. These studies were at 50% RH and moderate metabolic rate (160 W m 2 ). Ensembles included in these studies ranged from woven flame resistant (FR) coveralls 16) to prototype particle barrier coveralls 17) to various configurations of chemical protective clothing for demilitarization of chemical munitions 18) to hazmat suits. CAV for any given study was based on the work clothes control for that study at 50% RH. In this way, the reference point was specific to the population and other possible confounders to determining CAV across studies. Within a study, the assigned CAV was the WBGT crit for the ensemble/conditions minus the WBGT crit for work clothes at 50% RH. Results Clothing adjustment and R e,t,a The dataset for the relationship between CAV and R e,t,a came from four published studies 6, 7, 18, 19) and one unpub- Industrial Health 2017, 55, 549 554

PREDICATION OF WBGT CAVS 551 Clothing Adjustment Value [ C-WBGT] 16 14 12 10 8 6 4 2 0 CAV = 7.66 ln(r e,t,a ) + 33.1 r² = 0.88-2 0.00 0.06 0.08 0.10 Apparent Total Evaporative Resistance [kpa m 2 / W] a Apparent Total Evaporative Resistance [kpa m 2 / W] 0.10 0.09 0.08 0.07 0.06 R e,t,a = 28 ln(r e,t,s ) + 0.09 R² = 0.90 0.00 0.00 0.20 0.40 0.60 Static Total Evaporative Resistance [kpa m 2 / W] Fig. 1. Relationship between R e,t,a and CAV for 24 different clothing ensembles plus 5 work clothes controls with log-linear regression fit of the data. a Apparent Total Evaporative Resistance [kpa m2 / W] 0.00 Low Moderate High Metabolic Rate Level Work Clothes Cotton Coveralls Particle-Barrier Microporous Coveralls Vapor-Barrier b Clothing Adjustment Value [ C-WBGT] 18 16 14 12 10 8 6 4 2 0 CAV = 5.81 ln(r e,t,s ) + 20.7 R² = 0.87-2 0.00 0.20 0.40 0.60 Static Total Evaporative Resistance [kpa m 2 / W] Fig. 3. Relationships of R e,t,s to (a) R e,t,a and to (b) CAV. Apparent Total Evaporative Resistance [kpa m2 / W] 0.00 Work Clothes Cotton Coveralls Particle-Barrier Microporous Coveralls Vapor-Barrier 20% 50% 70% Relative Humidity b Fig. 2. Relationship by clothing ensemble between R e,t,a and (a) metabolic rate and (b) relative humidity. lished study. There were 37 combinations of ensemble and trial conditions (plus 4 controls) for the published studies and 8 more ensembles plus one control for the unpublished study. The mean CAV and R e,t,a for each ensemble/trial pair is illustrated in Fig. 1 along with a log-normal curve through the data. For five clothing ensembles, the expected interactions between R e,t,a and metabolic rate and between R e,t,a and relative humidity were examined. Figure 2 demonstrates the interaction between the computed value of R e,t,a for the five clothing ensembles for metabolic rate (Fig. 2a) and for relative humidity (Fig. 2b). Clothing adjustment value and R e,t,s USF received manikin data on R e,t,s for nine ensembles as reported to us from two laboratories using ASTM F

552 T BERNARD et al. Table 1. Values for CAV [ C] based on analysis of variance (ANOVA), logistic regression, and predicted from static total evaporative resistance Ensemble CAV based CAV 6, 7) ANOVA based on Logistic Regression 8) R e,t,a [kpa m 2 /W] Predicted CAV from R e,t,a R e,t,s [kpa m 2 /W] Predicted CAV from R e,t,s Woven Clothing (reference value) 0 0 3 0.2 12 0.6 Particle Barrier 0.7 0.5 4 0.4 48 1.2 Water Barrier 2.2 2.0 8 2.3 12 2.2 Vapor Barrier (pooled) 7.7 6.9 0.0844 6.3 Vapor Barrier at 20% rh 11.4 10.6 7 9.7 Vapor Barrier at 50% rh 7.8 6.5 2 6.7 Vapor Barrier at 70% rh 5.4 5.0 7 5.4 Unpublished Data at 50% rh Level B Ensemble (THL=900) 4.8 8 5.7 8 3.1 Level B Ensemble (THL=800) 6.1 7 7.8 6 4.0 Level B Ensemble (THL=500) 6.7 6 7.6 0.073 5.5 Level B Ensemble (THL=200) 14.0 0.077 13.5 0.486 16.5 2370 Standard Test Method for Measuring the Evaporative Resistance of Clothing Using a Sweating Manikin. Five of the ensembles were tested at USF under six conditions (3 levels of RH at moderate metabolic rate and 3 levels of metabolic rate at 50% RH); and the other four ensembles were tested under on condition (moderate metabolic rate at 50% RH). Fig. 3 illustrates the relationships for R e,t,a from R e,t,s and for CAV from R e,t,s for these data. A log-linear function was fitted to each set of data. Discussion Clothing adjustment value and R e,t,a There was a clear overall trend between CAV and R e,t,a. The log-linear fit was likely dominated by two factors. First, about half the data were for low evaporative resistances and tended to follow the line closely. Second there was one point at high evaporative resistance that may have influenced the overall trajectory (see Level B Ensemble (THL=200) in Table 1). The line tended to underestimate the CAV at R e,t,a s between and kpa m 2 /W. To examine the magnitude of the potential error, CAV data from USF based on analysis of variance 6, 7) and logistic regression 8) are provided in Table 1. The table also includes R e,t,a for vapor barrier which was divided into overall and three RH levels and for two test ensembles in a Level B configuration with negative pressure respirator. Figure 2 illustrates the computed value of R e,t,a for the five clothing ensembles against metabolic rate and relative humidity. As expected, there was generally a decrease in R e,t,a as the metabolic rate increased, which was accomplished by increasing treadmill speed. The increased treadmill speed would increase both the relative air velocity and the pumping effect due to increased motion. The changes in R e,t,a were relatively small for four of the clothing ensembles and of the magnitude that would be expected from ISO 9920 11). For vapor barrier clothing, the magnitude of decrease with increasing metabolic rate was not expected. Havenith et al. 20, 21) relate this decrease to the moisture that condensates inside this type of clothing, which could create errors in the traditional methods of calculating evaporative resistance. This means that future models to predict some sort of real-world evaporative resistance may need to include an interaction term with fabric permeability. As reported by Bernard, et al. 6), the CAV remained relatively constant for all four of the ensembles with changes in metabolic rate. That may suggest some robustness of the approach to assigning CAVs based on a moderate metabolic rate. There was also a clear interaction between R e,t,a and relative humidity, which was driven by the vapor-barrier ensemble. Relative humidity also had a strong effect on CAV for high evaporative resistance 7). The effect was expected for CAV because of the relatively small contribution of evaporative cooling with vapor-barrier clothing. That is, WBGT was not a good tool to predict heat stress level for ensembles with low evaporative cooling. But decreasing values for vapor-barrier R e,t,a was not expected. The underlying assumption was that evaporative resistance was independent of water vapor pressure. This assumption may not hold up for ensembles with high apparent total evaporative resistance due to complex heat exchange mechanisms (e.g., heat pipe effect) 20, 21). Again, considering an interaction with relative humidity (and presumably water vapor pressure) may better explain real-world heat transfer while wearing clothing with low permeability. The Industrial Health 2017, 55, 549 554

PREDICATION OF WBGT CAVS 553 unaccounted for and unknown effects add to the current uncertainty in the relationship between CAV and R e,t,a. In summary, there was a relationship between CAV and R e,t,a. The most interesting feature was the log-linear relationship with diminishing effects on CAV with increasing evaporative resistance. The overall finding of a positive trend was expected and was somewhat trivial because the same protocol and end point was used to arrive at both parameters to express an effect of permeability. More interesting and in need of further investigation were the interactions with metabolic rate and humidity driven by vaporbarrier coveralls. The value of the relationship between CAV and R e,t,a will come with a link of R e,t,a to R e,t,r. Clothing adjustment value and R e,t,s An obvious question was whether manikin data can be used to predict and prescribe a CAV. This can be approached by considering the static values of total evaporative resistance (R e,t,s ) from a manikin. A logical next step was to determine R e,t,r from ISO9920 or similar approach. The working assumption was that R e,t,r and R e,t,a were tightly related. There was such a narrow range of conditions among the USF data compared to the range implicit in ISO9920 that the bridge from R e,t,r and R e,t,a cannot be evaluated. For this reason, the leap from static manikin data to R e,t,a and CAV was made in this paper as a starting point until more data are available. Using manikin data on R e,t,s for seven ensembles, Fig. 3 illustrates the relationships of R e,t,a from R e,t,s and to CAV from R e,t,s for these data. The characteristic shape of the log-normal fit was similar to R e,t,a. That is, there was a diminishing effect with higher evaporative resistance. The shape, however, was largely driven by one point that was far from the other data. In Fig. 3a, the very high vapor resistance ensemble was a totally capsuling suit with negative pressure respirator (Level B configuration) with an evaporative resistance that was about five times higher than the next highest ensemble. This made the extrapolation of the curve tenuous. In Fig. 3b, the other outlier at a R e,t,s value of 0.084 was a vapor-barrier coverall without a hood at 20% RH. This condition also represented the highest observed R e,t,a 14) and CAV 7). Again, this introduces the concern about the interaction of humidity and permeability. Manikin data on total evaporative resistance can provide a reliable prediction of CAV for ensembles with low to moderate R e,t,s (< kpa m 2 /W). For the range of ensembles included in the sample this would be single layers of woven or non-woven coveralls (specifically particle-barrier fabrics) over modesty clothing. As the R e,t,s increases to higher values, there is some risk of underestimating the CAV. Table 1 also includes R e,t,s for six ensembles (woven clothing combined work clothes and cotton coveralls) and an estimated CAV (=5.70 ln(r e,t,s )+20.2). Again, the agreement between CAVs was reasonable with the same caveat about lack of validation. More data for R e,t,s values above 5 kpa m 2 /W is essential because the shape of the curve was dictated by one point. A clear limitation of this study was the range of air velocities. All of the studies took place in a chamber with air velocity of 0.5 m/s. Conclusions The principal purpose of this paper was to map a course from Clothing Adjustment Values (CAV) used in WBGTbased exposure assessment to static total evaporative resistance data from manikins. While there were not enough data to finish the journey, there were some considerations for future studies that will improve the use of manikin data to represent real-world heat exchange. At the most practical level, static total evaporative resistance can predict CAV for single layers of woven and some non-woven fabrics with adequate air permeability. It appears that clothing with R e,t,s less than 5 kpa m 2 /W can be used to predict and prescribe a CAV. The other findings pointed to further areas of research. It appeared that ensembles with high total evaporative resistance may be associated with interactions with metabolic (likely as a surrogate for a pumping factor) and with water vapor pressure. At the least, vapor-barrier clothing, even in relatively unrestrictive use as coveralls, falls out of the limits for current methods of predicting real-world evaporative resistance from manikin data. In a broader scope, models to explain the interaction of high evaporative resistance with the environment should be explored and validated. Acknowledgments Much of the data used in this study were collected under CDC/NIOSH R01-OH03983. There were many industry and government sponsors for the remaining data reported here. The authors also thank Elizabeth McCullough at Kansas State University and George Havenith and staff at Loughborough University for some manikin data reported here. Other manikin data were provided by North Caroline State University under contract to NIOSH. The authors

554 T BERNARD et al. recognize and thank the many laboratory assistants and trial participants who made this paper possible. Disclaimer The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health. Mention of company names or products does not constitute endorsement by NIOSH. References 1) ACGIH (2016) Heat Stress and Strain TLV, in Threshold Limit Values and Biological Exposure Indices for Chemical Substances and Physical AgentsACGIH : Cincinnati, OH. 2) Jacklitsch B, Williams WJ, Musolin K, Coca A, Kim J-H, Turner N NIOSH criteria for a recommended standard: occupational exposure to heat and hot environments. NIOSH. 3) International Organization for Standardization (ISO) (1989) ISO7243: Hot environments Estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature)geneva: ISO. 4) Garzon-Villalba XP, Wu Y, Ashley CD, Bernard TE (2017) Ability to Discriminate Between Sustainable and Unsustainable Heat Stress Exposures-Part 1: WBGT Exposure Limits. Annals of work exposures and health. 5) Ramsey JD (1978) Abbreviated guidelines for heat stress exposure. Am Ind Hyg Assoc J 39, 491 5. 6) Bernard TE, Caravello V, Schwartz SW, Ashley CD (2008) WBGT clothing adjustment factors for four clothing ensembles and the effects of metabolic demands. J Occup Environ Hyg 5, 1 5, quiz d21 3. 7) Bernard TE, Luecke CL, Schwartz SW, Kirkland KS, Ashley CD (2005) WBGT clothing adjustments for four clothing ensembles under three relative humidity levels. J Occup Environ Hyg 2, 251 6. 8) Garzón-Villalba XP, Wu Y, Ashley CD, Bernard TE (2017) Heat Stress Risk Profiles for Three Non-Woven Coveralls. J Occup Environ Hyg (doi:10.1080/15459624.2017.1388514). 9) Kenney WL (1987) WBGT adjustments for protective clothing. Am Ind Hyg Assoc J 48, 576 7. 10) O Connor DJ, Bernard TE (1999) Continuing the search for WBGT clothing adjustment factors. Appl Occup Environ Hyg 14, 119 25. 11) International Organization for Standardization (2007) ISO 9920: Ergonomics of the thermal environment Estimation of thermal insulation and water vapour resistance of a clothing ensemblegeneva: ISO. 12) Havenith G, Holmér I, den Hartog EA, Parsons KC (1999) Clothing evaporative heat resistance proposal for improved representation in standards and models. Ann Occup Hyg 43, 339 46. 13) Barker DW, Kini S, Bernard TE (1999) Thermal characteristics of clothing ensembles for use in heat stress analysis. Am Ind Hyg Assoc J 60, 32 7. 14) Caravello V, McCullough EA, Ashley CD, Bernard TE (2008) Apparent evaporative resistance at critical conditions for five clothing ensembles. Eur J Appl Physiol 104, 361 7. 15) Kenney WL, Mikita DJ, Havenith G, Puhl SM, Crosby P (1993) Simultaneous derivation of clothing-specific heat exchange coefficients. Med Sci Sports Exerc 25, 283 9. 16) Ashley CD, Bernard TE (2008) Effects of hoods and flameretardant fabrics on WBGT clothing adjustment factors. J Occup Environ Hyg 5, 59 62. 17) Bernard T, Ashley C, Trentacosta J, Kapur V, Tew S (2010) Critical heat stress evaluation of clothing ensembles with different levels of porosity. Ergonomics 53, 1048 58. 18) Fletcher OM, Guerrina R, Ashley CD, Bernard TE (2014) Heat stress evaluation of two-layer chemical demilitarization ensembles with a full face negative pressure respirator. Ind Health 52, 304 12. 19) Gonzalez NW, Bernard TE, Carroll NL, Bryner MA, Zeigler JP (2006) Maximum sustainable work rate for five protective clothing ensembles with respect to moisture vapor transmission rate and air permeability. J Occup Environ Hyg 3, 80 6. 20) Havenith G, Brode P, den Hartog E, Kuklane K, Holmer I, Rossi RM, Richards M, Farnworth B, Wang X (2013) Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin. J Appl Physiol (Bethesda, Md.: 1985), 114, 778 85. 21) Havenith G, Richards MG, Wang X, Brode P, Candas V, den Hartog E, Holmer I, Kuklane K, Meinander H, Nocker W (2008) Apparent latent heat of evaporation from clothing: attenuation and heat pipe effects. J Appl Physiol (Bethesda, Md.: 1985), 104, 142 9. Industrial Health 2017, 55, 549 554