Stable Q-switched mode-locked Nd 3+ :LuVO 4 laser by Cr 4+ :YAG crystal

Similar documents
Analysis of Passively Q-Switched Lasers With Simultaneous Modelocking

Comparison of CW Pumping and Quasi-CW Pumping for a Passively Q-switched Nd:YAG Laser

Highly efficient, narrow-linewidth, and singlefrequency actively and passively Q-switched fiber-bulk hybrid Er:YAG lasers operating at 1645 nm

BLEACHING AND Q-SWITCHING OF U 2+ :CaF 2 AT 1535nm

Design and realization of a compact and multi-purpose passively Q-switched ND:YAG laser system

Passively Q-switched Ytterbium doped fiber laser with mechanically exfoliated MoS 2 saturable absorber

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

Wavelength-tunable, dual-wavelength Q-switched Ho 3+ -doped ZBLAN fiber laser at 1.2 µm

Heriot-Watt University

Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator

Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser

Lasers. Conditions of laser operation. Classification of lasers. Continuous wave lasers (He-Ne) Pulsed lasers (Nd-YAG, Ti:Sa)

Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold-nanosphere based saturable absorber

SHORT pulse fiber lasers, because of their short duration and

Black phosphorus Q-switched large-mode-area Tm-doped fiber laser

The first report of short intense pulses of laser light, called giant pulses at the time, was. By David Welford

SATURABLE absorbers (SAs) are widely used in the passively

C-Band Q-Switched Fiber Laser Using Titanium Dioxide (TiO 2 )As Saturable Absorber

We are where you are!

Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm

Passive Q-Switching of an All-Fiber Laser Using WS 2 -Deposited Optical Fiber Taper

Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm

Q-switched erbium-doped fibre laser based on molybdenum disulfide and tungsten disulfide as saturable absorbers

Article Compact Narrow Linewidth Actively Q-Switched Er Yb Double-Clad Fiber Laser

ExQ-Laser. Q-Switched Nd:YAG Laser Therapy Systems

Discovery PICO Series

My study in internship PMT calibration GATE simulation study. 19 / 12 / 13 Ryo HAMANISHI

A Q-switched fibre laser operating in the 2 mu m region based on nonlinear polarization rotation technique

ComplexCity Q-Switched Nd:Yag

Premium Q-Switched Nd:YAG

Passively Q-Switched Microchip Lasers and Applications

TRANSITION metal dichalcogenides (TMDs), as

FIBER OPTIC IRONING DIODE LASER EPILASION!

P NM DIODE LASER HAIR REMOVAL SYSTEM. Beijing Sanhe Beauty S & T Co., Ltd

STUDY OF MANUFACTURING THERMOCHROMIC WOOD. Zhijia Liu. Fucheng Bao* Feng Fu*

Science. Results. Trust.

Q-Plus EVO. Q-Switched Laser Platform Tailored to Your Needs TECHNICAL SPECIFICATIONS RESULTS BEFORE / AFTER ACCESSORIES. Rx Only.

FIBER OPTIC IRONING DIODE LASER EPILATION!

Lasers Principles Types And Applications Borner

Episode 504: How lasers work

The legacy behind Q-switched technology. MedLite C

OPT SHR IPL. Skin & hair treatments. A must for patient to enjoy perfect skin without pain. Big spot size with 20HZ fast speed.

InnoLas Photonics GmbH. Company & Product Presentation

The Design of the Process Template for the Folding of Garment

AD-A ration PAGE ApBrov7d

The world s fastest SLT/YAG laser.

What is Pico second laser?

Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors

Improvement in Wear Characteristics of Electric Hair Clipper Blade Using High Hardness Material

Scanner Optimized Efficacy (SOE) Hair Removal with the VSP Nd:YAG Lasers

Be an artist of the new era.

Portable Picosecond Nd Yag Laser System

P-808. Hair removal- Faster, painless and better

What is Pico second laser?

Q: Switch ND: YAG Laser Skin Care System Model SQ-2

MAXIMUM POWER TRIPLE MODE Q-SWITCHED, LP AND QLP ND:YAG LASER SYSTEM 3 PULSE DURATIONS 4 DISTINCTIVE WAVELENGTHS MULTIPLE INDICATIONS

OBIS Galaxy. Fiber Input, Fiber Output, Eight Channel Beam Combiner FEATURES

Q-Plus Series. Taking care of people, our masterpieces. Q-Switched Laser Platform Tailored to Your Needs. Aesthetics

PoS(PD07)030. Unusual PMT behaviour in KamLAND

LUCID QY/Q-PTP. 1064nm/532nm Q-Switched Nd:YAG Laser

ICOOL. ICOOL--- First Rate Air Cooling system.

TEPZZ 9659Z A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: B32B 17/10 ( )

Interaction effects of radiation and convection measured by a thermal manikin wearing protective clothing with different radiant properties

NEW 3 Wavelengths and Resolve Fractional. The Complete Picosecond Platform

OBIS Galaxy Integrated System

Sapphire sensors for particles detection

SYNCHRO QS4 MEDICINE AND AESTHETICS SYNCHRO QS4. Maximum Results and Safety in Treating Multicolored Tattoos and Pigmented Lesions

AESTHETIC PRECISION THE SAFEST AND MOST PRECISE LASER TREATMENT SOLUTION AVAILABLE FOR PIGMENTED LESIONS AND MULTI-COLOR TATTOO REMOVAL

Study on the dispersivity of UV-curable inkjet ink HUANG Bei-qing, ZHANG Wan, WEI Xian-fu, FENG Yun

Study on the Dispersity of Black Water-based Covering Ink WANG Dandan a, HUANG Beiqing b, WEI Xianfu c, LIU Jianghao d and LIU Shuang e

elase with Motif A New Picture in Pain Free Hair Removal Science. Results.Trust.

Micro-Fractional & Whole Beam Technology Ablative Vaporization + Non-Ablative Coagulation Multiple Profitable Indications

Growth and Changing Directions of Indian Textile Exports in the aftermath of the WTO

(12) United States Patent (10) Patent No.: US 6,752,627 B2

FORMATION OF NOVEL COMPOSITE FIBRES EXHIBITING THERMOCHROMIC BEHAVIOUR

The Perfect All-In-One Tattoo Removal Laser. Science Engineering Design Versatility Ease-of-Use Practicality

It is under the author s own responsibility

Hair Removal Using a Combination of Electrical and Optical Energies Multiple Treatments Clinical Study Six Months Follow up

EFFECTS OF FLUENCE AND PULSE DURATION

Selectivity (but, how?)

Optodynamic monitoring of laser tattoo removal

MORE PRO THAN EVER 2000W. High power DIODE LASER PLATFORM GUARANTEED QUALITY. by cocoon medical

Portable IPL System. Principle and Application

GentleYAG Pro-U. Outstanding Results. Treating Multiple Indications. Upgradable. Science. Results.Trust.

Can I remove the hair from my nipples? Absolutely, the flash represents no risk. Caution is advised on dark nipples.

Improving Men s Underwear Design by 3D Body Scanning Technology

a noticeable difference in tattoo removal

M. Tanida, M. Okabe, K. Tagai, and K. Sakatani

Reactive Fusion Cutting Add gas stream (usually oxygen) that reacts with material burn reaction (oxidation) adds energy to laser cutting Steel

HAIR REMOVAL PHOTOREJUVENATION ACNE. Pulsed light that charms

EXTREMELY POWERFUL AND COMPACT Q-SWITCH Nd:YAG LASER

Ellipse Light SPT + and I 2 PL +

SPECTROSCOPIC STUDIES ON NATURAL, SYNTHETIC AND SIMULATED RUBIES. Ms Low Yee Ching

One platform, endless solutions

INNATE ABILITY MOTUS AX. The New Era of Hair Removal. Hair Removal Benign Pigmented Lesions

Be an artist of the new

Influence of Toner Particle Shape and Size on Electrophotographic Image Quality

Introducing the new LUMINA Laser and IPL platform

The neov Perfect Nails without Medication. The neov surgical laser platform at 1064 nm

Photonics-enhanced Polymer Labs-on-Chips: from high-tech prototyping platform to applications

Transcription:

Stable Q-switched mode-locked Nd 3+ :LuVO 4 laser by Cr 4+ :YAG crystal Ja-Hon Lin, (1) Hou-Ren Chen, (2) Hsin-Han Hsu, (2) Ming-Dar Wei, (3) Kuei-Huei Lin, (4) and Wen-Feng Hsieh (2) 1 Department of Electro-Optical Engineering & Institute of Electro-Optical Engineering National Taipei University of Technology Taipei 10608, Taiwan jhlin@ntut.edu.tw 2 Department of Photonics & Institute of Electro-Optical Engineering National Chiao Tung University, 1001 Tahsueh Rd., Hsinchu 300, Taiwan wfhsieh@mail.nctu.edu.tw 3 Department of Photonics, Feng Chia University 100, Wenhwa Rd., Seatwen, Taichung 407, Taiwan mdwei@fcu.edu.tw 4 Department of Science, Taipei Municipal University of Education 1, Ai-Kuo West Rd., Taipei 100, Taiwan Abstract: In use of saturable Cr 4+ :YAG crystals, we have demonstrated the stable Q-switched and mode-locked (QML) operation of the Nd:LuVO 4 laser. The operation range of QML in use of the Cr 4+ :YAG is larger than that use of SESAM and NLM. The obtained shape of Q-switched envelope, repetition rate and pulse energy are demonstrated to depend on the initial transmittance of the Cr 4+ :YAG and reflectivity of the output coupler. Using R = 60% and T 0 = 40%, the highest pulse energy of 77 μj of each Q-switched envelope, and the highest peak power abou00 kw of Q-switched mode-locked pulses can be obtained a5 W pump power. It demonstrate the superior characteristic of the Nd:LuVO 4 crystal. 2008 Optical Society of America OCIS codes: (140.4050) Mode locked laser; (140.3580) Lasers, solid state; (140.3480) Lasers, diode pumped; (190.0190) Nonlinear optics References and Links: 1. J.-H. Lin, K.-H. Lin, C.-C. Hsu, W.-H. Yang, and Wen Feng Hsieh, Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd:GdVO4 laser, Laser Phys. Lett. 4,413-417 (2007). 2. J.-H. Lin, W.-H. Yang, W.-F. Hsieh, and Kuei-Huei Lin, Low threshold and high power output of a diode-pumped nonlinear mirror mode-locked Nd:GdVO4 laser, Opt. Express 13, 6323-6329 (2005). 3. S.L. Schieffer, D. Brajkovic, A.I. Cornea, and W. Andreas Schroeder, Low-threshold, dual-passive mode locking of a large mode area Nd:GdVO4 laser, Opt. Express 14, 6694-6706 (2006). 4. A. Minassian, B. A. Thompson, G. Smith, and M. J.Damzen, "High-Power Scaling (>100 W) of a Diode-Pumped TEM 00 Nd:GdVO 4 Laser System," IEEE J. Sel. top. Quantum Electron., 11, 621-625 (2005). 5. H. Zhang, J. Liu, J. Wang, C. Wang, Li Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, Characterization of the laser crystal Nd:GdVO 4, J. Opt. Soc. Am. B 19, 18-27 (2002). 6. C. Maunier, J. L. Doualan, R. Moncorge, A. Speghini, M. Bettinelli, E. Cavalli, Growth, spectroscopic characterization, and laser performance of Nd:LuVO 4, a new infrared laser material that is suitable for diode pumping, J. Opt. Soc. Am. B, 19, 1794-1800 (2002). 7. S. Zhao, H. Zhang, J. Liu, J. Wang, X. Xu, Z. Zhao, J. Xu, M. Jianga, Growth of excellent-quality Nd:LuVO 4 single crystal and laser properties, J. Crystal Growth, 279, 146-153 (2005). 8. J.-H. Lin, K.-H. Lin, H.-H. Hsu, and W.-F. Hsieh, Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism, Laser Phys. Lett. 5, 276-280 (2008). 9. Y.-F. Chen, and S. W. Tsai, Simultaneous Q-Switching and Mode-Locking in a Diode-Pumped Nd :YVO4 Cr 4+ :YAG Laser, IEEE J. Quantum Electron. 37, 580-586 (2001). (C) 2008 OSA 13 October 2008 / Vol. 16, No. 21 / OPTICS EXPRESS 16538

10. S. Zhang, E. Wu, H. Pan, H. Zeng, Q-switched mode-locking with Cr 4+ : YAG in a diode pumped Nd :GdVO 4 laser, Appl. Phys. B 78, 335-338 (2004). 11. S. P. Ng, D.Y. Tang, J. Kong, L.J. Qin, X.L. Meng, Z.J. Xiong, Q-switched and continuous-wave mode-locking of a diode-pumped Nd:Gd 0.64 Y 0.36 VO4 Cr 4+ :YAG laser, Appl. Phys. B 78, 511-515 (2005). 12. S. Pan, L. Xue, X. Fan, H. Huang, J. He, Diode-pumped passively Q-switched mode-locked Nd:YLF laser with uncoated GaAs saturable absorber, Opt. Commun. 272, 178-181 (2007). 13. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, M. Jiang, D. Tang, G. Xie, and H. Luo, Passively mode-locked Nd:LuVO4 laser with a GaAs wafer, Opt. Lett. 33, 225-227 (2008). 14. J. Liu, H. Zhang, Z. Wang, J. Wang, Z. Shao, and M. Jiang, H. Weber, Continuous-wave and pulsed laser performance of Nd:LuVO4 crystal, Opt. Lett. 29, 168-170 (2004). 15. H. Yu, H. Zhang, Z. Wang, J. Wang, Z. Shao, and M. Jiang, X. Zhang, CW and Q-switched laser output of LD-end-pumped 1.06µm c-cut Nd:LuVO 4 laser, Opt. Express 15, 3206-3211 (2007). 16. J. Liu, D. Shen, S.-C. Tam, and Y.-L. Lam, Modeling Pulse Shape of Q-Switched Lasers, IEEE J. Quantun Electron. 37, 888-896 (2001). 1. Introduction High-peak power and short-pulse lasers are continuously interested in laser physicist because they have various practical applications. Generally, continuous wave mode-locking (CWML) is widely used technique in generating ultra short optical pulses. However, its repetition rate is restricted by the cavity length and is in tens of MHz. Due to these characteristics, the CW-ML pulses have various advantages such as such as wavelength conversion, supercontinuum generation [1], optical communication, optical switching, optical clocking, and nonlinear optical measurement. Nevertheless, high repletion rate pulses will accumulate heat in materials, leading to thermal lensing in optical nonlinearity measurements such as Z scan measurement. On the contrary, the Q-switched can generate lower repletion rates and higher pulse energies output. However, the generated Q-switched pulsewidth is comparative longer relative to the CW-ML pulses so that they have lower peak powers. Simultaneously Q-switched and mode-locked (QML) lasers possess the superior property of high peak power over the CW mode-locked lasers but retain almost the same pulsewidth. The power of central ML peak pulse in the Q-switched envelope can be greatly enhanced and the repletion rate of pulses is greatly reduced. Especially for picosecond (ps) mode-locked laser, which may not have enough peak intensity for achieving efficient wavelength conversion and supercontinuum generation, the QML provides a solution for these problems. Some methods like cavity dumping and regenerative amplifier have similar effect but their configurations are more complicated than the QML system. Recently, the QML pulses generated from diode-pumped solid-state lasers (DPSSL) have been widely reported because they possess several advantages, e.g., compactness, high reliability, high efficiency, and high output peak power. Neodymium-doped orthovanadate crystals have been one of the widely used gain media for DPSSL due to their high gain, superior thermal properties and chemical stability. The representative neodymium-doped orthovanadate crystal, Nd:YVO 4, has become an industrially and commercially used laser crystal in DPSSL. Other crystal, such as Nd:GdVO 4, is also widely reported to produce low threshold and high peak power pulses [2-4] due to its relatively high thermal conductivity [5]. Recently, Nd:LuVO 4 [6-7], a new member of the orthovanadate family, has been paid much attention as a promising candidate of excellent DPSSL crystal due to its high absorption and emission cross sections over other reported crystals. With the semiconductor saturable absorber mirror (SESAM) or nonlinear mirror (NLM) technique [1-2], the QML pulses can be obtained prior to the complete CW mode-locking state while increasing the pump power. However, the pump power for stable QML operation with regular QML pulses is limited in a small range. By integrating the techniques of NLM and SESAM [8], the range of QML state can be extended to the higher pump power to generate regular stable high output power QML pulses with fixed period and Q-switched envelope. (C) 2008 OSA 13 October 2008 / Vol. 16, No. 21 / OPTICS EXPRESS 16539

Generally, the Cr 4+ :YAG crystal is an effective slow saturable absorber for Q-switching but not for mode-locking. However, the simultaneously Q-switching and mode locking had been observed due to the excite-state absorption (ESA) while the intracavity intensity is high enough [9]. With Cr 4+ :YAG as saturable absorber, stable and high peak power QML pulses have been generated in Nd:YVO 4, Nd:GdVO 4, Nd:Gd 0.64 Y 0.36 VO 4 and Nd:YLF lasers [9-12]. In Nd:LuVO 4 laser, CW-mode locking has been demonstrated with a GaAs wafer [13] to generate short pulses; and with an acousto-optical modulator [14] and a Cr 4+ :YAG as saturable absorber [15] Q-switching were also reported in Nd:LuVO 4 laser to produce high pulse energy. However, it is still lack of reports on simultaneously Q-switched and mode-locked Nd:LuVO 4 laser using a Cr:YAG saturable absorber. In this paper, instead of using the plano-concave cavity [15], we use the z-type cavity resonator to achieve smaller cavity beam size for enhancing intracavity intensity inside Cr 4+ :YAG. We successfully demonstrated low repetition rate and high peak power Q-switched and mode-locked pulses in diode-pumped a-cut Nd:LuVO 4 laser by the Cr 4+ :YAG crystal. In use of the different permutation of the initial transmittance T 0 of the Cr 4+ :YAG and the reflectance of the output coupler R, the output characteristics including the repetition rates, pulse energies and shape of the Q-switched envelopes will be investigated. 2. Experiments The schematic setup of our laser with folded z-configuration is shown in Fig. 1. A fiber-coupled diode-array laser (FAP-81-16C-800-I, Coherent Inc.) with center wavelength of 809 nm was used as the pump source. The output beam from the fiber was imaged on the laser crystal, which is a 3x3x8 mm 3 a-cut Nd:LuVO 4 crystal (with 0.5-at.% Nd 3+ concentration), through an 1:1.8 optical imaging accessory (OIA's, Coherent Inc.). One side of laser crystal (S 1 ) is high reflection (HR) coated a064 nm and anti-reflection (AR) coated at 808 nm as an end mirror of the resonator; while the other side (S 2 ) with 2 degree wedge is AR coated a064 nm. Two curved mirrors M 1 and M 2, with radii of curvatures of 500 and 200 mm, were used as folding mirrors to conduct cavity beam through a Cr 4+ :YAG to the output coupler (OC). The distance between the gain medium and M1 is 30 cm, that from M1 to M2 is 80 cm and from M2 to OC is 13.5 cm. We put Cr 4+ :YAG abou0.5 cm in front of the output coupler. We therefore can estimated the beam diameter at Cr 4+ :YAG to be about 150 μm. We chose different combinations of OC with reflectivity of 60% and 80% a064 nm and Cr 4+ :YAG saturable absorber with initial transmittance T 0 of 80%, 55% and 40% to optimize the generated QML pulses. The output of the Nd:LuVO 4 laser from either OC or the wedged facet of the laser crystal was measured by a power meter (Ophir Inc.) or detected by a high speed InGaAs detector (Electro-Physics Technology, ET 3000) that was connected to the oscilloscope (LeCroy LT372, bandwidth 500 MHz) or an optical spectrum analyzer (Ando-AQ6315A) with resolution of 0.01 nm. A noncollinear autocorrelator containing a 2-mm thick type-i BBO was used to measure the width of mode-locked pulse. (C) 2008 OSA 13 October 2008 / Vol. 16, No. 21 / OPTICS EXPRESS 16540

Fig. 1. Schematic diagram of diode-pumped Q-switched mode-locked Nd:LuVO 4 laser. GM is gain medium (Nd:LuVO 4 ), M1 and M2 are the folding mirrors and OC is the output coupler. 3. Results and discussion The output powers versus pump power (P p ) at the CW states (black squares) and the QML states in use of T 0 = 80% ((blue diamonds), 55% (green triangles) and 40% (red circles) were shown in Fig. 2(a). As expected, the QML state can be operated provided that lasing threshold is achieved after the saturable absorbing Cr 4+ :YAG crystal having been inserted into the laser cavity. Besides, the lasing threshold increases, the output power becomes lower as increasing the cavity loss via lowering R and T 0. With the same T 0, the output power using R = 80% [solid symbols] are generally higher than that of using R = 60% (open symbols). Although the non-saturable absorbing and even the thermal induced loss of the saturable absorber also influence the threshold, due to the cavity beam passing twice through the absorber and being reflected once by the OC in a round trip, more influence of the threshold and the output power on T 0 (dependence of T 2 0 ) than on R. In Fig. 2(a), we obtained the larger stable range of QML operation using Cr 4+ :YAG than that in use of SESAM [1] or NLM [2], in which the QML state can usually be observed before entering completely CW-ML state as increasing the pump power but the operation range is very small. The QML state can only be observed as the pump powers increased from 1.7 W to 2.6 W for SESAM [1] and 2 W to 2.3W for NLM [2]. Similar effects of T 0 and R can be found in the repetition rates (R ep ) of the Q-switched envelope which were revealed in Fig. 2(b), the values show increase tendency as increasing the pump power. With the same T 0 and pump power, the value of R ep for R = 80% is slightly higher than R = 60%. In use of R = 60%, the highest value of R ep for T 0 = 80% is about 68 khz that is relatively higher than the 23 khz and 14 khz as T 0 = 55%, and 40%, respectively. (C) 2008 OSA 13 October 2008 / Vol. 16, No. 21 / OPTICS EXPRESS 16541

Average power(w) (a) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 CW @ R CW @ R=60% QML @ QML @ QML @ QML @ QML @ QML @ Repetion rate (khz) 0 2 4 6 8 10 12 14 16 Pump power (W) (b) 80 60 40 20 0 0 2 4 6 8 10 12 14 16 Pump power (W) Fig. 2. (a). The average output powers, and (b) the repetition rates versus the pump power at the CW state (black squares) and QML states with the T 0 (blue diamonds), 55% (green triangles), and 40% (red circles). The expanded Q-switching envelopes in use of the pump power of 13.5 W are shown in Fig. 3. Inside the envelope, a number of discrete and periodic mode-locking (ML) pulses with time interval about ~ 8 ns can obviously be seen. The width of the stable ML pulse was measured using an autocorrelator and shown in Fig. 4 (black squares) that reveals the pulsewidth t 0 about 56 ps by fitting to the Sech 2 shape (red curve). In this experiment, three different initial transmittance of Cr 4+ :YAG, T 0 = 40%, 55%, and 80% as three columns in Fig. 3, were used to match with reflectance of OC, R = 60% and 80%, as two rows in Fig. 3. By fitting the envelopes with the formula a Pt () = 2 {exp[( 176. * t/ t1] + exp[ 176. * t/ ]}, (1) in which a is the scaling factor, we could obtain the rising time and the falling time of the Q-switched envelopes, respectively. Therefere, the widths and asymmetric factors of these Q-swithced envelopes can be estimated by the definition of τ = ( + )/2 and /. Together with the numbers of ML pulses (N) in each Q-switched envelopes, the energies of the highest ML pulses (E ML ), and the the calculated initial inversion (n i ) and the threshold inversion (n t ) for different R and T 0 were listed in Table I. These listed parameters can also be theoretically calculated using the model proposed by J. Liu et al. [16] if the laser parameters including the stimulated emission cross section of gain medium and the absorption cross section of saturable absorber are given. (C) 2008 OSA 13 October 2008 / Vol. 16, No. 21 / OPTICS EXPRESS 16542

Table I T 0 = 40% T 0 = 55% T 0 = 80% R= NO. of pulses N 60% 7 80% 11 60% 9 80% 13 60% 16 80% 22 (ns) (ns) τ (ns) / E ML (mj) 28 83 55 0.34 11 23 157 90 0.15 6.6 41 104 72 0.39 6.9 36 166 101 0.21 4.1 92 162 126 0.57 2.2 92 267 179 0.34 1.5 n i *10 15 (mm) -3 10.1 n t *10 15 (mm) -3 2.27 8.89 1.04 7.39 2.27 6.16 1.04 4.18 2.27 2.95 1.04 Generally,, and τ decreases as T 0 decreases, no matter what reflectance of OC were used. However, the rising time strongly depends upon T 0 but it has a little effect on change of R. In contrast, the falling time increases as both T 0 and R increase. It may be due to that the rising time is mainly determined by the initial inversion n i, in which the initial spontaneously emitted photons (n i ) begin to experience positive net gain. The initial inversion is defined as 2 ln(1/ T0 ) + ln(1/ R) + L ni = 2σl, (2) where L is nonsabturable intracavity round-trip optical loss, σ and l are the stimulated emission cross section and the length of gain medium. The larger initial emitted photons n i, the faster is to extract energy stored in gain medium so as to bleach the saturable absorber and to reach the threshold inversion n t with T 0 ~ 1. This results in the smaller. Because n i quadraticlly depends on T 0 but only linearly on R in Eq. (2), the calculated n i (also listed in Table I) using σ = 1.46x10 18 cm 2 for the used a-cut Nd:LuVO 4 crystal and L = 2% reveal consistent dependence of. On the other hand, the falling time measures the decay time of cavity photons after the absorber being completely bleached, and therefore, is related to the photon lifetime according to nl tf c( 1 R), (3) Here, n is the index of the gain medium and c is the velocity of the light. Thus, the longer is expected for the larger R no matter what T 0 is used. Nevertheless, it is not the case in Fig. 3 and Table I, in which the laser with the lower T 0 experiences the shorter decay time. The dependence of on T 0 could be due to temporal shaping via the recovered absorption of the absorber with lower T 0 or larger absorption which possesses the higher concentration of (C) 2008 OSA 13 October 2008 / Vol. 16, No. 21 / OPTICS EXPRESS 16543

absorption ions to raise the cavity loss in the falling tail of the QML pulse. T 0 = 40% 55% 80% Intensity (A.U.) (a) =28 ns =83 ns / =0.34 (b) =41 ns =104 ns / =0.39 (c) =92 ns =162 ns / =0.57 R = 60% Intensity (A.U.) 0 50 100 150 (d) =23 ns =157 ns / =0.15 0 50 100 150 200 250 (e) =36 ns =166 ns / =0.21 0 100 200 300 400 500 (f) =92 ns =267 ns / =0.34 80% 0 50 100 150 200 250 0 100 200 300 0 200 400 600 Fig. 3. Expanded temporal shape of a single Q-switched & mode-locked pulse trains a3.5w pumping for R = 60% with T 0 (a), 55% (b), and 80% (c); and R with T 0 (d), 55% (e), and 80% (f). Experimental measured data Fitting results Intensity (A.U) -80-60 -40-20 0 20 40 60 80 Time (ps) Fig. 4. The measured autocorrelation trace (solid squares) and fitting curve by Sech 2 function. In Fig. 5, the pulse energies E J of the Q-switching envelope were estimated by dividing the average output power P 0 into the repetition rate R ep of the envelope. E J shows increase tendency as the pump power increases. Due to apparently decrease of R ep for the lower T 0 (Fig. 2(b)), E J for T 0 are higher than those of T 0 and 80% in Fig. 5. A5 W pumped power, the highest pulse energies of about 77 μj can be obtained for R = 60% and T 0 = 40%. With the same T 0, the obtained pulse energies have no much difference for R = 80% and 60% due to similar average output power and repetition rate. However, the pulse (C) 2008 OSA 13 October 2008 / Vol. 16, No. 21 / OPTICS EXPRESS 16544

energy and peak power for single ML pulse for R = 60% are higher than R = 80% due to less number of pulses in each Q-switched envelope or shorter Q-switched pulse width. The estimated pulse energy for each ML pulse is calculated by E J /N that was presented in Table I. P0 A5W pump power, the highest peak power of ML pulses calculated by Pp = is NRept0 abou00 kw for R=60% and T 0, where P 0 is the average output power, R ep is the repetition rate of the Q-switched envelope, N is the number of pulses within a Q-switched envelope, and t 0 is the pulsewidth of the mode locking pulses. Pulse energy (μj) 100 80 60 40 20 0 2 4 6 8 10 12 14 16 Pump Power(W) Fig. 5. The estimated pulse energy versus the pump power at the QML states with the T 0 (blue diamonds), 55% (green triangles), and 40% (red circles). 4. Conclusion We have demonstrated the stable Q-switched and mode-locked operation of the Nd:LuVO 4 laser in use of the Cr 4+ :YAG as the saturable absorber. The operation range of QML in use of the Cr 4+ :YAG is larger than that use of SESAM and NLM. The obtained shape of Q-switched envelope, repetition rate and pulse energy are demonstrated to depend on the initial transmittance of the Cr 4+ :YAG and reflectivity of the output coupler. Using R = 60% and T 0 = 40%, the highest pulse energy of 77 μj of each Q-switched envelope, and the highest peak power abou00 kw of Q-switched mode-locked pulses can be obtained a5 W pump power. It demonstrate the superior characteristic of the Nd:LuVO 4 crystal. Acknowledgments This work is supported by the Natural Science Council of Taiwan, Republic of China, under grant NSC 96-2112-M-027-002-MY3, NSC 96-2112-M-035-001 and NSC 96-2628-E-009-018-MY3. (C) 2008 OSA 13 October 2008 / Vol. 16, No. 21 / OPTICS EXPRESS 16545