Protection of Retinol in Organosilica Microparticles

Similar documents
TAGRAVIT TM R1 Encapsulated pure retinol. March 2015

The Effects of Shear on Neutralized Carbomers in Aqueous Conditions

Technology. HydroSal. Formulated for suspension in. water and hydro-alcoholic. environments, HydroSal. provides long lasting effects and

How To Measure In Vivo UVA and UVB Blocking Sunscreens and Cosmetics on Human Skin

FORMATION OF NOVEL COMPOSITE FIBRES EXHIBITING THERMOCHROMIC BEHAVIOUR

Tagravit R1- The Miracle of Encapsulated Retinol

Design, development and evaluation of solid dispersion incorporated transdermal gel of benzoyl peroxide

Hybrid PMMA Bead Containing Chemical Sunscreen Filters

PHYTOSPHERIX TM as a Sun Protection Factor (SPF) Booster

Liposomal vitamin C highly concentrated for topical application with SDS system. Restores the physical and mechanical properties of the skin.

Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors

FLORAESTERS CHEMISTRY

ABS Acai Sterols EFA Efficacy Data

LaraCare A200 Your Multi-Functional Larch Tree Active

Hydrolyzed Jojoba Esters to Potentiate Glycerin Moisturization

SunCat MTA. Safe and Efficient Sunscreen Dispersion

LaraCare A200 Your Multi-Functional Larch Tree Active

Date: Draft: 3 PR #: Zinc oxide, ultraviolet protection, sunscreen, particle size distribution. - copy starts -

SKIN BRIGHTENING SYSTEM THE POWER OF FOAM AND PHOTODAMAGE O F T H E FA C E. Powerful 3-Piece Regimen Kit

Hyalurosmooth. by Beauty Creations. Natural fine line and wrinkle filler

*- Corresponding author: Sun Chemical Corporation, 5020 Spring Grove Ave., Cincinnati OH

Performance is in our nature.

Table of Contents. Marketing Trends Chemical & Physiological Composition of Hair Fision KeraVeg18 Comparisons:

DOWSIL 9040 Silicone Elastomer Blend

Characteristic of hydrophobically-modified hydroxypropyl methylcellulose, and application of hair cosmetics.

What is THIXCIN R? What is seeding? What is the benefit of using THIXCIN R in combination with BENTONE GEL in my formulation?

Demystifying Skin Care for Massage Therapists Chapter 5

Product data sheet TRIspire Enhance

Official Journal of the European Union

Chemistry of Hair and Beauty Products

ElfaMoist AC Humectant

Zemea Propanediol : Optimizing Formulations Using a Natural Solvent and Humectant. Skincare Ingredients 2013 June 12, 2013

Bath Salt Characterization using the Tekmar HT3 Headspace Analyzer and GC/MS. Application Note. Abstract. Introduction

Marine Molecules as Nanofibres. Seafood Innovation Conference

AN INDEPENDENT ASSESSMENT OF INK AGE DETERMINATION BY A PRIVATE EXAMINER Erich J. Speckin

The Kinetics of Dye Rinse from Bleached Hair

Personal Care. Industrial & Consumer Specialties. A unique solution for complete skin repair. Vitipure TM

AKOTT BIOGENICO LINE. The Art of Chemistry

Anti-ageing serum, anti-wrinkle action with bioencapsulated hyaluronic acid

Sustainability focus: Exploration into natural beauty and bio cosmetics across biopharma

WorléeAqua Nail - The simple Way to create outstanding water-based Nail Polishes

topical + tropical sensorial experience

PERSONAL CARE.

Research and Development Business

TRIspire Vitalize QuaTeRnIzeD PanTHenoL FoR enhanced SubSTanTIvITy & ConDITIonIng QuaTeRnIzeD PanTHenoL FoR enhanced SubSTanTIvITy & ConDITIonIng

PREPARATION AND EVALUATION OF HERBAL EMULSION FOR TREATMENT OF DANDRUFF

PERSONAL CARE. INNOVATIVE & NATURAL Functional ingredients based on sugar chemistry

Surface Modified Pigments for Inkjet Ink Applications. Mark Kowalski

NIOSKIN ULTRA-FLEXIBLE NIOSOME. The latest generation of skin delivery system. easy to formulate total natural compound preservative free

DRAFT EAST AFRICAN STANDARD

AC MVS Lips Lip Plumping. Tomorrow s Vision Today!

Powderfeel WR. One solution for multiple textures

Product Information Oil components: dermofeel sensolv

Silicone Ingredients for Personal Care

key to anti-aging hair care volumizing Hydrating

Identification and quantification of preservative chemicals in common household products. Session 1

PHYSICAL PROPERTIES AND SENSORY ATTRIBUTE OF COCONUT MOISTURIZER WITH VITAMIN E

American Cleaning Institute Development of Exposure Assessments Glossary of Functional Classes

ABIL EM 180 High performance emulsifier for all types of W/O formulations

Tospearl 145A. Tospearl 120A

Regulation of Sunscreens in Australia

SILICONE SOLVENTS IN PAPER CONSERVATION: BENCHTOP EXPERIMENTS. Austin Plann Curley ARTC 665 Richard Wolbers

FloraSomes Inci: Jojoba Esters

DEMONSTRATING THE APPLICABILITY OF DESI IMAGING COUPLED WITH ION MOBILITY FOR MAPPING COSMETIC INGREDIENTS ON TAPE STRIPPED SKIN SAMPLES

AcquaSeal Coconut Anti-Aging, Nourishing, Moisturization, Improves Slip. Tomorrow s Vision Today!

TECHNICAL BULLETIN. Zemea Propanediol: A Natural Solvent for Active Ingredients

DMPA Dimethylolpropionic Acid in Air Dry Water Soluble Alkyd Resins

thermal Repair Beyond the Bond ProCutiGen Thermal Shield support + protect hair cuticle ProBonding, Keratin derived biomimetic, neo-cuticle

Retinol and hyaluronic acid of high molecular weight formulated in biocapsules and liposomes

Product Information Hair care: dermofeel P-30

AHCare. Have younger looking skin the mild way. Amphoteric Hydroxy Complexes: all the benefits of Alpha Hydroxy Acids with enhanced tolerance

Paper Chromatography and Steam Distillation EVERY STUDENT MUST BRING AT LEAST 3 ORANGES TO LAB FOR THIS EXPERIMENT! Equipment

HAIR CARE SAFEELIA WGE-60SP

Why is pretreatment needed

Products List. Anti-Acne Agent Brillian-CSA (Capryloyl Salicylic Acid) P 10

CHM111 Lab Physical Separations Grading Rubric

DECOLORIZATION OF CHROMIUM AND DYEING SPOTS ON LEATHER BY BLEACHING AGENTS

Experiment #3. Physical Separations Candy Chromatography

chromatography + phototherapy skin illuminating

WHAT IS GEL ELECTROPHORESIS?

Hard as nails New study shows that supplementation with GELITA s VERISOL helps to restore nail strength in women affected by brittle nail syndrome

SKIN CARE FORMULATION INCORPORATING SODIUM LACTATES, SODIUM PCA AND LAURYL PCA: COMPARATIVE MOISTURISING EFFICACY ON ASIAN SKIN

ELASTOMER RAW MATERIALS

AFFINITY - A novel system for direct Intrafollicular infusion of liquid solutions containing active ingredients.

Chapters 18, 22 & 30 Viscosity-inducing Agents, Ointment Bases and Ointments, Creams, Gels, and Pastes

CAMPO RESEARCH PTE LTD Level 30, 6 Battery Road, Singapore Tel: (65) / 202 / Direct Fax (65) /

Safety Data Sheet 1. IDENTIFICATION 2. HAZARDS IDENTIFICATION

STAGES OF PHARMACEUTICAL MANUFACTURING

Particle Characterization for Cosmetics and Cosmeceuticals

PERSONAL CARE PRODUCT OVERVIEW

Information on New Ingredients Overview. Organicspa

Cashmere-derived keratin for device manufacturing on the micro- and nanoscale

NutroxSun: new evidence strengthens the case for skin defence from within

Carpet Cleaning Guide. Carpet Cleaning 101: An Overview

Colour Toner - Conventional or Chemical

Sunscreen. Student Procedure

Healthy Shine Lilac. For renewed balance and shine

RootBioTec HO Prevents hair loss ensures fuller hair

Silicones as a Color-Lock Aid in Rinse-Off Hair Care Products

Hair Restoration Gel

Transcription:

Protection of Retinol in Organosilica Microparticles Kim S. Finnie, PhD; and Chris Barbé, PhD Ceramisphere Pty. Ltd., Sydney, Australia KEY WORDS: retinol, microparticle, encapsulation, stability, organosilica ABSTRACT: In this article, retinol encapsulated in organosilica microparticles (12 14% w/w) having an average particle size of 0.3 micron are shown in a 40-day test period to exhibit enhanced stability to oxidation when compared with similar commercial stabilized retinol products. Vitamin A in the form of all-trans retinol is a popular component of cosmetic anti-aging creams due to its effects in rejuvenating skin, smoothing wrinkles and enhancing elasticity. Although retinol aids in the creation of stronger, healthier skin, 1, 2 its incorporation into dermal creams is problematic due to the highly fragile nature of the molecule. Retinol is a naturally occurring hydrophobic compound with a polyolefinic structure that is subject to facile isomerization to cis-isomers, with lowered biological activity, 3 upon exposure to light. Moreover, the photosensitive molecule is also rapidly degraded by oxygen and elevated temperatures. Chemists handling retinol in the laboratory employ inert atmosphere, e.g., nitrogen or argon, in the absence of light since significant degradation occurs after several hours of exposure to air. 4 Derivatives such as retinyl acetate, propionate and palmitate esters are less susceptible to decomposition but are also less active, requiring an additional hydrolysis step to release retinol in the skin. 2 For practical handling purposes, it would therefore be advantageous to stabilize retinol by encapsulating it in a carrier, which is also beneficial in that it would allow for the incorporation of stabilizers such as butylated hydroxytoluene (BHT) and vitamins E and C, widely used as antioxidants. Furthermore, the use of a carrier could help to address the limited aqueous solubility of retinol. Indeed, there has been considerable research interest in developing methods for stabilizing retinol in a range of host materials. Examples include liposomes, 5 polymers, 6 solid lipid nanoparticles, 7 chitosan 8 and silica microparticles 9 even a combination of materials to give a multiply stabilized system. 10 The use of a carrier could help to address the limited aqueous solubility of retinol. Clearly, however, the necessity to protect retinol from the surrounding environment must be balanced with the ease by which the molecule can later be released from the host matrix. There is considerable evidence for improved stability in the encapsulated form, as evidenced by the number of stabilized retinol/carrier products that are available commercially. In response, the author s company has developed a process for encapsulating retinol as part of a wider technology for the encapsulation of hydrophobic molecules into organosilica microparticles. The synthetic procedures employed are solgel based and conducted at an ambient temperature and benign ph to form ceramic particles in which the active molecules are fully encapsulated. This technology minimizes the release of the active in aqueous conditions but rapidly releases it under lipophilic conditions. Here, the authors evaluate co-encapsulated all-trans retinol and BHT in both vinylsiloxane and phenylsiloxane particles, corresponding to two of the most commonly used organically substituted silicon alkoxides, vinyltrimethoxysilane and phenyltrimethoxysilane. The organic substitution is necessary from a processing perspective to enable the co-encapsulation of hydrophobic compounds, but the resulting particles are hydrophilic and easily incorporated into aqueous mixtures. The results of stability tests are compared to assess the retention of bioactivity in encapsulated retinol in samples exposed to air at ambient temperature for periods of up to 40 days. Further, the stability of encapsulated retinol is compared with that of several commercially available stabilized retinols also containing similar concentrations of BHT to assess to what extent the ceramic matrix contributes protection from oxidation. Experimental Design Sample synthesis: The general methodology behind the hydrophobe encapsulation method is to form an o/w microemulsion using a suitable alkyl phenol ethoxylate surfactant in a 1:20 mass ratio. An organosilica precursor is added to the emulsion with the hydrophobe of interest. Rapid hydrolysis and condensation of the precursor results in the formation of spherical particles inside the oil droplets and encapsulation of the hydrophobe located therein. 362 Cosmetics & Toiletries magazine www.cosmeticsandtoiletries.com Vol. 126, No. 5/May 2011

a) b) Figure 1. UV/visible diffuse reflectance spectra of retinol-doped and undoped phenylsiloxane particles Figure 2. SEM images of a) vinylsiloxane and b) phenylsiloxane particles; size bars = 5 µm Equal masses of solid retinol, 3100 units/mg, and BHT > 99%a were agitated on a shaker with either vinyltrimethoxysilane or phenyltrimethoxysilane for 30 min, then added to the emulsion and stirred for 5 min to homogenize. An amine catalyst was added to the emulsions to hydrolyze and condense the organosilica precursors. Stirring was continued for 4 hr, after which the particles were separated by centrifugation and washed with water to remove excess surfactant. The resulting yellow pastes were stored undried at 6 C for ease of redispersal but sub-samples were dried under nitrogen for measurement of retinol loading. Characterization: Retinol loadings were calculated by leaching the retinol from dried samples into ethanol and analysis by high performance liquid chromatography (HPLC)b. The UV and visible spectra of doped and undoped phenylsiloxane particles dispersed in polytetrafluoroethylene (PTFE) powder, 10% w/w, were measured using a spectrometerc equipped with an accessory for measuring diffuse reflectance Figure 3. Size distributions for a) vinylsiloxane and b) phenylsiloxane particles 364 Cosmetics & Toiletries magazine www.cosmeticsandtoiletries.com CT1105_Finnie.fcx.indd 364 a The solid retinol and BHT used for this study were obtained from Sigma Aldrich. b The HPLC system used for this study is manufactured by Waters Corp. c The Cary 500 spectrometer equipped with a Biconical accessory is manufactured by Varian. Vol. 126, No. 5/May 2011 4/18/11 11:42:14 AM

spectra. SEM images d were recorded of samples washed with ethanol to remove excess surfactant. Particle size distributions were measured in water using static light scattering e. Air stability study: Two commercial stabilized retinols, one liquid and one solid designated as commercial 1 and commercial 2, respectively were tested and compared with the retinol-loaded organosilica particles. Two sets of data were recorded: one in which all samples were stored for a day in nitrogen to dry the organosilica particles, then exposed to air; and another that was exposed to air immediately so that the organosilica particles dried in an oxidative environment. Following the initial drying step, the masses of all samples were monitored to adjust for loss of residual water with continued air exposure. No change in mass was detected for the commercial samples, which were non-volatile. At approximately weekly intervals, subsamples were either dissolved in suitable solvents, in the case of the commercial samples, or leached into ethanol, in the case of the organosilica particles. The leached samples were conducted in duplicate and the results averaged. The mass percentage of active retinol was measured f using the visible absorption band at 325 nm. For comparison with the stabilized samples, free retinol was exposed to air for 2 hr, then redissolved in ethanol and compared with the spectra of freshly dissolved retinol. Results and Discussion The retinol loadings, per mass of dried particles, were found to be 11.7 ± 0.2% and 13.9 ± 0.2%, corresponding to an encapsulation efficiency of 79% and 65% for vinylsiloxane and phenylsiloxane, respectively. This retinol loading was approximately double that of the commercial samples selected. UV/visible spectra of both retinol doped and undoped phenysiloxane particles dispersed in PTFE powder, 10% w/w, are shown in Figure 1. The retinol-doped sample had a strong absorption band at 335 nm. The undoped sample had weaker absorption peaks at 266 nm, 272 nm and 284 nm, which are characteristic absorption bands of the phenyl group comprising the organosilica matrix. d The Neoscope JCM-5000 benchtop SEM is manufactured by Jeol. e The Mastersizer 2000 Static Light Scattering instrument is manufactured by Malvern. f The Cary 50 spectrometer is manufactured by Varian. Figure 4. Free retinol dissolved in ethanol, a) freshly dissolved retinol at 7 mg/ml and b) retinol exposed to air for 2 hr then dissolved at 14 mg/ml Vol. 126, No. 5/May 2011 www.cosmeticsandtoiletries.com Cosmetics & Toiletries magazine 365

Figure 5. Absorbance of retinol extracted from commercial 2 exposed to air for: a) 1 day, b) 3 days, c) 10 days, d) 18 days, e) 25 days and f) 32 days Also, SEM images (see Figure 2) showed that the particles are spherical and, in the case of the vinylsiloxane sample (see top in Figure 2), the majority of particles had a size ~250 nm, with some larger micron-sized particles also present. The phenylsiloxane particles (see bottom in Figure 2) were similar but appeared to contain a significantly larger portion of micron-sized particles. Particle size distributions (see Figure 3) showed that the average particle size for the samples was ~250 300 nm. The spectra of retinol in ethanol solutions are shown in Figure 4. Curve a) corresponds to a freshly dissolved retinol solution in ethanol with a concentration of 7 mg/ml. A standard retinol solution was dried overnight under nitrogen. The fine precipitate was then exposed to air for 2 hr in the absence of light and redissolved in ethanol to give a solution of 14 mg/ml, as shown by curve b). Even at double the concentration, significant degradation of the 325 nm peak was clearly observed after just a 2-hr exposure to air, and new bands appeared at wavelengths < 300 nm, corresponding to oxidation products. Stability of Encapsulated Retinol in Air Figure 6. After 1 day and 40 days, blue and red curves, respectively, exposure to air for phenylsiloxane, a) dried in air and b) dried in nitrogen 366 Cosmetics & Toiletries magazine www.cosmeticsandtoiletries.com CT1105_Finnie.fcx.indd 366 The absorption spectra of the commercial samples reveal significant degradation over the test period, although at a much slower rate than observed for unencapsulated retinol. Figure 5 shows the spectra obtained, in units of AU/mg, for the solid commercial sample (commercial 2) dried in air and exposed to air up for 32 days. The gradual disappearance of the main peak is evidence of the oxidation of retinol. In contrast, the spectra of retinol leached from the organosiloxane particles showed minimal change with time. Figure 6 shows the spectra of the phenylsiloxane samples after 1 day and 40 days, respectively, of exposure to air. The sample dried in air shows some degradation, whereas that dried in nitrogen before exposure to air shows no change. The spectra of the vinylsiloxane samples show similar trends, with greater degradation when dried in air. Plots showing the change in retinol activity over a Vol. 126, No. 5/May 2011 4/18/11 11:42:18 AM

40-day period for all samples are shown in Figure 7. For ease of comparison, the data has been normalized by ratioing to the first measurements to show the percent of change with time. The dotted lines in Figure 7 indicate the correction required to adjust for the mass change due to additional drying of the ceramic particles over the 40-day period. In comparison with these values, the ceramic samples dried in air exhibited a 20% and 40% decrease in activity after 40 days for phenysiloxane and vinylsiloxane, respectively. It is possible that the larger particle size of the phenylsiloxane resulted in better protection of the particles. The ceramic samples, which were dried under nitrogen before exposure to air, showed considerably less degradation upon exposure to air, ~10% for both phenylsiloxane and vinylsiloxane. This suggests that the dried matrix is effective in reducing air permeation into the particles. Comparison with rates of degradation in the commercial samples showed that the ceramic matrix performed well in protecting against oxidation. Next Steps The described ceramic organosilica matrix appears promising as a means of stabilizing retinol when co-encapsulated with an antioxidant. Release tests (data not shown) in lipophilic conditions, e.g., in alcohol, resulted in rapid release of retinol from the ceramic matrix. It remains to be tested how effectively retinol can be released from particles when applied to the skin. Collaborative work by the authors has found no evidence of penetration through the skin by particles of this size. Nevertheless, there is potential for the submicron particles to become imbedded in the outer layer of the skin and to release retinol when in contact with natural skin oils. Conclusion Retinol is a fragile molecule that rapidly oxidizes upon exposure to air. However, its co-encapsulation with butylated hydroxytoluene in a protective matrix (liquid or solid) is an effective means to protect against oxidation. Here, retinol has been successfully encapsulated in organosilica microparticles with loadings of ~12 14% w/w, and tests comparing these organosilica particles and two commercial stabilized retinols, all stabilized with BHT, show a vast increase in stability in air, compared with unencapsulated retinol, which degrades within hours of exposure. The organosilica matrices also compared favorably with alternative stabilized retinols, showing minimal degradation in air, ~10%, after 40 days when the particles were dried under nitrogen before exposure to air. The ceramic organosilica matrix is a somewhat novel encapsulant for retinol and hydrophobes in general because while it is effective in encapsulating hydrophobic materials, the matrix itself is hydrophilic and mixes easily into aqueous formulations. The submicron size of the particles also aids blending into aqueous mixtures and is advantageous for application to the skin, 368 Cosmetics & Toiletries magazine www.cosmeticsandtoiletries.com Vol. 126, No. 5/May 2011

a) b) Figure 7. Change in activity as % of original for stabilized retinol samples, a) dried in air, and b) dried 1 day in nitrogen, then exposed to air; key: l phenylsiloxane, s vinylsiloxane u commercial 1 n commercial 2 presenting a potential alternative for formulators of skin care products. Reproduction of all or part of this article without expressed written consent is prohibited. To get a copy of this article or others from a searchable database, log on to www. CosmeticsandToiletries.com/magazine/ pastissues. References Send e-mail to kim.finnie@ceramisphere.com. 1. R Kafi et al, Improvement of naturally aged skin with vitamin A (retinol), Arch Dermatol 143 606 612 (2007) 2. A Jentzsch and P Aikens, RetiSTAR for Cosmetic Formulations: Stabilized Retinol, in Delivery Systems Handbook for Personal Care and Cosmetic Products: Technology, Applications and Formulations, MR Rosen, ed, William Andrew Inc, New York (2005) pp 861 872 3. M Kofler and SH Rubin, Physicochemical assay of vitamin A and related compounds, Vitamins and Hormones 18 315 339 (1961) 4. Sigma Aldrich, www.sigmaaldrich.com/ etc/medialib/docs/sigma/datasheet/6/ 95144dat.Par.0001.File.tmp/95144dat.pdf (Accessed Mar 16, 2011) 5. I Arsic, S Vidovic and G Vuleta, Influence of liposomes on the stability of vitamin A incorporated in polyacrylate hydrogel, Intl J of Cos Sci 21 4 219 225 (1999) 6. SK Klee, M Farwick and P Lersch, Triggered release of sensitive active ingredients upon response to the skin s natural ph, Coll Surf A 338 162 166 (2009) 7. V Jenning, M Schäfer-Korting and S Gohla, Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties, J of Controlled Release 66, 115 126 (2000) 8. D-G Kim et al, Retinol-encapsulated low molecular water-soluble chitosan nanoparticles, Intl J of Pharmaceutics 319 130 138 (2006) 9. M-H Lee, S-G Oh, S-K Moon and S-Y Bae, Preparation of silica particles encapsulating retinol using O/W/O multiple emulsions, J of Colloid and Interface Sci 240 1 83 89 (2001) 10. HG Ji and JS Choi, A triply stabilized system to improve retinol stability, Cosm & Toil 119 12 61 70 (2004) 370 Cosmetics & Toiletries magazine www.cosmeticsandtoiletries.com Vol. 126, No. 5/May 2011

Copyright of Cosmetics & Toiletries is the property of Allured Publishing Corporation and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.